
Intermittent Deep Neural Network Inference
Graham Gobieski

Carnegie Mellon University
gobieski@cmu.edu

Nathan Beckmann
Carnegie Mellon University
beckmann@cs.cmu.edu

Brandon Lucia
Carnegie Mellon University

blucia@cmu.edu

1 INTRODUCTION
The maturation of energy-harvesting technology has enabled new
classes of sophisticated, batteryless systems that will drive the
next wave of Internet of Things (IoT) applications. These appli-
cations require intelligence at the edge and even in the sensor
node, e.g., allowing systems to immediately interpret sensed data
and make judicious use of scarce bandwidth. However, inference
on energy-harvesting devices presents challenges currently unex-
plored, namely that energy-harvesting devices are severely resource-
constrained and operate intermittently only when energy is avail-
able. Typical systems run at a few MHz, have a few hundred KBs of
memory and consume power under 1mW when active [8, 22]. In
comparison, the most energy efficient DNN inference accelerators
consume hundreds of mW [5, 6, 9, 10].

An energy harvester’s power output is usually insufficient for
continuous operation and energy-harvesting systems operate inter-
mittently. An intermittently operating device slowly buffers energy
in a capacitor and operates in a short burst when the capacitor is
sufficiently charged. Software executes in short bursts of active
computation (e.g., 100,000 cycles) interrupted by power failures.
After power failure, the device recharges (e.g., over one second) and
continues executing [2, 3, 7, 8, 12, 17, 19, 23]. Power interruptions
require an intermittent device to flush state to non-volatile memory,
or lose the state on power failure. Guaranteeing correctness and
forward progress in an intermittent execution is a challenge that
recent work has begun to address [7, 17, 19].

Current energy-harvesting systems are several orders-of-magn-
itude too inefficient for practical DNN inference. Continuous sensor
classification requires inferences in seconds (or less) to justify local
inference vs. cloud offloading. Our initial explorations revealed that
a naïve implementation of DNN inference requires more memory
than is available on typical energy-harvesting systems [8, 22], even
for small networks. Moreover, even if they did fit, a single infer-
ence would take more than an hour, precluding execution in (the
milliseconds of) an intermittent execution period.

This paper presents Software-Only Neural Intermittent Computing
(SONIC), a software system that demonstrates the viability of DNN
inference on energy-harvesting systems, addressing both efficiency
and correctness. SONIC exploits the regular structure of inference
to guarantee correct intermittent execution more efficiently than
general-purpose intermittent execution frameworks.

We first manipulate recent DNNs to fit into the tiny memory of
our energy-harvesting device through aggressive compression [11],
focusing on OK Google, Google’s keyword-spotting network [21],
and LeNet, a digit recognition network [15]. To this baseline com-
pressed network, SONIC adds DNN-specialized software support
for efficient and correct intermittent operation. Unlike existing

SysML, February, 2018, Stanford, California, USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

intermittent execution frameworks, SONIC eliminates wasteful,
repeated work and imposes little overhead. SONIC demonstrates
the viability of batteryless DNN inference: running on radio-wave-
harvesting hardware, SONIC ensures correctness and outperforms
a recent general-purpose intermittent framework by 2×.

The remainder of the paper describes SONIC in detail, conclud-
ing with a roadmap for future improvements in intermittent DNN
inference efficiency and capability.

2 SONIC DESIGN AND IMPLEMENTATION
We build SONIC, an intermittent DNN inference framework, and
use it to implement the LeNet [15] and OK Google [21] on a Texas
Instruments MSP430 microcontroller (MCU). SONIC overcomes
two challenges. First, the MCU has little memory and poor perfor-
mance requiring SONIC to greatly reduce the memory and compute
requirements of DNN inference. Second, SONICmust guarantee cor-
rect intermittent execution with minimal overhead. Prior work on
intermittent execution focused on correctness for general-purpose
code, not considering specialized performance optimization. SONIC
is the first system to specialize intermittence support to optimize
for a particular domain. We employ known techniques [11] to fit
the DNN’s parameters on the device; this paper focuses on how
SONIC efficiently guarantees correct intermittent execution.

Fitting DNN inference on a low-power microcontroller. To fit DNN
inference on the MSP430, we leverage Deep Compression [11]. We
compress fully connected and convolutional layers, pruningweights
below a threshold, and use a sparse matrix representation similar
to alternating value-index format. We achieve modest accuracy loss
(≈4%) and high compression, reducing the memory footprint by up
to 34× and the number of multiply-accumulate operations by up
to 7.5×. We use fixed-point math, reducing memory by half and
avoiding the MSP430’s floating-point emulation. We used these
optimizations in all evaluated implementations.

Efficient intermittent execution via flexibly sized tasks. SONIC
includes new optimizations that improve intermittent execution
performance. We implemented a baseline intermittent DNN in-
ference implementation using Alpaca [19], a recent intermittent
execution framework. Alpaca programs are split into fixed-size
tasks that a compiler makes idempotent by buffering values read
then written (i.e., WAR values) in non-volatile memory until task
completion. After power failure, Alpaca resumes at the start of the
failed task. By guaranteeing idempotence, Alpaca ensures correct
intermittent execution. However, fixed-size tasks waste work by
discarding results from partial task executions. Tasks must be short
to complete in a single intermittent charge cycle, but smaller tasks
have higher setup/teardown overheads.

SONIC addresses these issues by flexibly sizing tasks to grow
and shrink to fit the system’s energy budget. SONIC’s flexibility
relies on the predictable structure of DNN computation, specifi-
cally repeated sparse matrix-multiply loops. SONIC persistently

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SysML, February, 2018, Stanford, California, USA G. Gobieski et al.

Tile-12Tile-5 SONIC
a[0] += b[0] × c

a[9] += b[9] × c

a[0] += b[0] × c

a[4] += b[4] × c

…

…
a[5] += b[5] × c

a[7] += b[7] × c

…

Energy
a[0] += b[0] × c

a[9] += b[9] × c

…

… 1s

Ti
m

e

a[0] += b[0] × c
…

a[9] += b[9] × c

……

a[5] += b[5] × c

a[4] += b[4] × c

…

a[4] += b[4] × c

…

Recharging

Figure 1: Comparing SONIC to Alpaca’s fixed-size tasks [19].
SONIC’s flexible tasks guarantee forward progress with var-
ied capacitor sizes with little overhead and wasted work.

tracks the completion of each of a task’s loop iterations, resuming
the last uncompleted iteration after power failure. At most, the
computation loses one loop iteration on power failure. SONIC guar-
antees forward progress when a single DNN inner-loop iteration
always completes within a charge cycle. Unlike prior checkpoint-
ing systems for intermittent execution [12, 18, 23], SONIC tracks
application-level progress and uses Alpaca tasks to avoid check-
pointing imposing low overheads.

Figure 1 compares SONIC against the Alpaca implementation
using two task sizes, Tile-5 and Tile-12. Time goes top-to-bottom.
The capacitor energy is shown on the left; power fails once, requir-
ing a one second recharge. Tile-5’s first task completes 5 iterations,
and power fails during the second task. Tile-5 resumes in the sec-
ond task, repeating 3 loop iterations from before the power failure.
Tile-12 has larger tasks that better amortize task overheads, and
complete more loop iterations than Tile-5 before power fails. How-
ever, Tile-12’s task does not complete. Tile-12 repeatedly resumes
at the start of the first task and does not make forward progress.
SONIC tracks iteration-by-iteration progress, resuming execution
where it left off and repeating at most one loop iteration. SONIC
amortizes task overheads like Tile-12, allowing it to complete more
work before failing, while guaranteeing progress.

Handling idempotence violations in DNN inference. An intermit-
tent system demands different optimizations than a conventional
one. Conventional systems often order (e.g.,) convolution loops
to maximize cache locality. Unfortunately, loop ordering compli-
cates intermittent execution by updating matrix elements in place
in a single task, which violates idempotence. Re-executing such
non-idempotent tasks leads to incorrect results. To ensure idem-
potence in flexibly sized tasks, SONIC re-orders loops so that each
element is updated only once per outer loop (i.e., task). SONIC alter-
nates between two copies of activations being computed, making
a single update to one copy before switching to other. SONIC’s
approach is practical because most energy-harvesting MCUs lack
caches [8, 22] with one cycle memory latency, and loop ordering
yields no speedup.

Evaluation. We implemented SONIC on a radio-wave-harvesting
systemwith a Texas Instruments MSP430FR5994 powered by a Pow-
erCast P2110 1m away from its receiver and 1mF and 100 µF capac-
itors. We evaluated SONIC with LeNet [15] and OK Google [21],

Continuous 1mF 100µF

Ba
se

Ba
se

Ba
se

Ti
le

-5

Ti
le

-5

Ti
le

-5

Ti
le

-1
2

Ti
le

-1
2

Ti
le

-1
2

SO
N

IC

SO
N

IC

SO
N

IC

0

100

200

300

400

500

Ti
m

e
(s

)

× ××

Compute
Dead

(a) LeNet

Continuous 1mF 100µF

Ba
se

Ba
se

Ba
se

Ti
le

-5

Ti
le

-5

Ti
le

-5

Ti
le

-1
2

Ti
le

-1
2

Ti
le

-1
2

SO
N

IC

SO
N

IC

SO
N

IC

× ×

(b) Google Keyword Spotting

Figure 2: Execution time for one inference on a TI MSP430.
We compare SONIC to a baseline implementation (Base) and
two intermittent variants using Alpaca [19] (Tile-5 and Tile-
12). We run on continuous power and on harvested energy
using two capacitor sizes (1mF, and 100µF). The baseline
system does not make progress on harvested energy. SONIC
is comparable to Base on continuous power and more than
twice as fast as the next-best intermittent variant.

comparing to Alpaca implementations with two task sizes, and a
conventionally optimized baseline.

Figure 2 shows that SONIC has similar performance to the base-
line optimized system and outperforms fixed-size tasks by 2×. More
significantly, the baseline does not make forward progress on har-
vested energy, and neither does the Tile-12 fixed task implemen-
tation on LeNet with a 100 µF capacitor. SONIC’s flexible tasks
complete as much work as possible within each charge cycle and
guarantee forward progress for both capacitors.

3 CONCLUSION AND FUTURE DIRECTIONS
SONIC demonstrates the feasibility of DNN inference on energy-
harvesting systems, opening the door to new classes of IoT applica-
tions. We have shown that there is ample room for optimization
of existing intermittent systems for DNN inference, and that the
optimizations needed for efficient intermittent DNN inference differ
significantly from conventional systems. However, there remains
headroom for performance improvement to make SONIC appealing
for many IoT applications. Our ongoing work is to develop software
and hardware techniques to improve intermittent DNN inference
efficiency by orders of magnitude. We will extend our evalution
of SONIC with end-to-end prototypes [16] and other DNN mod-
els [14]. We will investigate other software techniques to reduce
memory and compute requirements [1, 4, 20], and approximation
techniques, e.g., skipping partially executed task work.

One of the biggest opportunities is to improve the architecture.
Current ultra-low-power microcontrollers poorly suit DNN infer-
ence, spending little of their energy on computation (i.e., MACs)
and most on control and register accesses [13]. We envision a spe-
cialized, ultra-low-power, data-parallel architecture for DNN in-
ference with native intermittence support, incorporating SONIC’s
techniques into the architecture. Unlike recent DNN accelerators,
energy-harvesting systems need only optimize for energy efficiency,
not performance, requiring research in new directions.

2

Intermittent Deep Neural Network Inference SysML, February, 2018, Stanford, California, USA

REFERENCES
[1] Jose M. Alvarez and Mathieu Salzmann. 2017. Compression-aware Training of

Deep Networks. In Neural information processing systems.
[2] D. Balsamo, A. Weddell, A. Das, A. Arreola, D. Brunelli, B. Al-Hashimi, G. Merrett,

and L. Benini. 2016. Hibernus++: A Self-Calibrating and Adaptive System for
Transiently-Powered Embedded Devices. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems PP, 99 (2016), 1–1. https://doi.org/10.
1109/TCAD.2016.2547919

[3] D. Balsamo, A.S. Weddell, G.V. Merrett, B.M. Al-Hashimi, D. Brunelli, and L.
Benini. 2014. Hibernus: Sustaining Computation during Intermittent Supply for
Energy-Harvesting Systems. Embedded Systems Letters, IEEE PP, 99 (2014), 1–1.
https://doi.org/10.1109/LES.2014.2371494

[4] Sourav Bhattacharya and Nicholas D Lane. 2016. Sparsification and separation
of deep learning layers for constrained resource inference on wearables. In
Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems
CD-ROM. ACM, 176–189.

[5] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
andOlivier Temam. 2014. DianNao: a small-footprint high-throughput accelerator
for ubiquitous machine-learning. In Proc. of the 19th intl. conf. on Architectural
Support for Programming Languages and Operating Systems.

[6] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. In Proc. of the
43rd annual Intl. Symp. on Computer Architecture (Proc. ISCA-43).

[7] Alexei Colin and Brandon Lucia. 2016. Chain: Tasks and Channels for Reliable
Intermittent Programs. In Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications (OOPSLA).

[8] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable Energy
Storage Architecture for Energy-harvesting Devices. In ASPLOS.

[9] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo,
Xiaobing Feng, Yunji Chen, and Olivier Temam. 2015. ShiDianNao: Shifting
vision processing closer to the sensor. In Proc. of the 42nd annual Intl. Symp. on
Computer Architecture (Proc. ISCA-42).

[10] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pdream, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In Proc. of the 43rd annual Intl. Symp. on Computer Architecture
(Proc. ISCA-43).

[11] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization, and Huffman
Coding. In Proc. of the 5th Intl. Conf. on Learning Representationas (Proc. ICLR’16).

[12] Matthew Hicks. 2017. Clank: Architectural Support for Intermittent Computa-
tion. In Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA ’17). ACM, New York, NY, USA, 228–240. https://doi.org/10.
1145/3079856.3080238

[13] Mark Horowitz. 2014. Computing’s energy problem (and what we can do about
it). In Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE
International. IEEE, 10–14.

[14] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[15] Yann Le Cun, LD Jackel, B Boser, JS Denker, HP Graf, I Guyon, D Henderson, RE
Howard, and W Hubbard. 1989. Handwritten digit recognition: Applications of
neural network chips and automatic learning. IEEE Communications Magazine
27, 11 (1989), 41–46.

[16] Song-Mi Lee, SangMin Yoon, andHeeryon Cho. 2017. Human activity recognition
from accelerometer data using Convolutional Neural Network. In Big Data and
Smart Computing (BigComp), 2017 IEEE International Conference on.

[17] Brandon Lucia and Benjamin Ransford. 2015. A Simpler, Safer Programming
and Execution Model for Intermittent Systems. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
2015). ACM, New York, NY, USA, 575–585. https://doi.org/10.1145/2737924.
2737978

[18] Kaisheng Ma, Yang Zheng, Shuangchen Li, Karthik Swaminathan, Xueqing Li,
Yongpan Liu, Jack Sampson, Yuan Xie, and Vijaykrishnan Narayanan. 2015.
Architecture exploration for ambient energy harvesting nonvolatile processors.
In High Performance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on. IEEE, 526–537.

[19] Kiwan Maeng, Alexei Colin, and Brandon Lucia. 2017. Alpaca: Intermittent Exe-
cution without Checkpoints. In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages and Applications (OOPSLA).
ACM, Vancouver, BC, Canada.

[20] Preetum Nakkiran, Raziel Alvarez, Rohit Prabhavalkar, and Carolina Parada. 2015.
Compressing deep neural networks using a rank-constrained topology.. In Six-
teenth Annual Conference of the International Speech Communication Association.

[21] Tara N Sainath and Carolina Parada. 2015. Convolutional neural networks
for small-footprint keyword spotting. In Sixteenth Annual Conference of the
International Speech Communication Association.

[22] Alanson P. Sample, Daniel J. Yeager, Pauline S. Powledge, Alexander V. Mamishev,
and Joshua R. Smith. 2008. Design of an RFID-Based Battery-Free Programmable
Sensing Platform. IEEE Transactions on Instrumentation and Measurement 57, 11
(Nov. 2008), 2608–2615.

[23] Joel Van Der Woude and Matthew Hicks. 2016. Intermittent computation without
hardware support or programmer intervention. In Proceedings of OSDI’16: 12th
USENIX Symposium on Operating Systems Design and Implementation. 17.

3

https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/TCAD.2016.2547919
https://doi.org/10.1109/LES.2014.2371494
https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1145/3079856.3080238
https://doi.org/10.1145/2737924.2737978
https://doi.org/10.1145/2737924.2737978

	1 Introduction
	2 SONIC Design and Implementation
	3 Conclusion and Future Directions
	References

