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Abstract—Ultra-low-power (ULP) devices are becoming per-
vasive, enabling many emerging sensing applications. Energy-
efficiency is paramount in these applications, as efficiency de-
termines device lifetime in battery-powered deployments and
performance in energy-harvesting deployments. Unfortunately,
existing designs fall short because ASICs’ upfront costs are too
high and prior ULP architectures are too inefficient or inflexible.

We present SNAFU, the first framework to flexibly generate
ULP coarse-grain reconfigurable arrays (CGRAs). SNAFU pro-
vides a standard interface for processing elements (PE), making
it easy to integrate new types of PEs for new applications. Unlike
prior high-performance, high-power CGRAs, SNAFU is designed
from the ground up to minimize energy consumption while
maximizing flexibility. SNAFU saves energy by configuring PEs
and routers for a single operation to minimize switching activity;
by minimizing buffering within the fabric; by implementing a
statically routed, bufferless, multi-hop network; and by executing
operations in-order to avoid expensive tag-token matching.

We further present SNAFU-ARCH, a complete ULP system
that integrates an instantiation of the SNAFU fabric alongside
a scalar RISC-V core and memory. We implement SNAFU in
RTL and evaluate it on an industrial sub-28 nm FinFET process
across a suite of common sensing benchmarks. SNAFU-ARCH
operates at <1 mW, orders-of-magnitude less power than most
prior CGRAs. SNAFU-ARCH uses 41% less energy and runs
4.4× faster than the prior state-of-the-art general-purpose ULP
architecture. Moreover, we conduct three comprehensive case-
studies to quantify the cost of programmability in SNAFU. We
find that SNAFU-ARCH is close to ASIC designs built in the same
technology, using just 2.6× more energy on average.

Index Terms—Ultra-low power, energy-minimal design, recon-
figurable computing, dataflow, CGRA, Internet of Things (IoT).

I. INTRODUCTION

TINY, ultra-low-power (ULP) sensor devices are becoming
increasingly pervasive, sophisticated, and important to

a number of emerging application domains. These include
environmental sensing, civil-infrastructure monitoring, and chip-
scale satellites [69]. Communication consumes lots of energy
in these applications, so there is a strong incentive to push ever-
more computation onto the sensor device [22]. Unfortunately,
widely available ULP computing platforms are fundamentally
inefficient and needlessly limit applications. New architectures
are needed with a strong focus on ULP (<1 mW), energy-
minimal operation.
Sensing workloads are pervasive: The opportunity for tiny,
ULP devices is enormous [41]. These types of embedded
systems can be deployed to a wide range of environments,
including harsh environments like the ocean or space [19].
Sensors on board these devices produce rich data sets that

require sophisticated processing [45, 46]. Machine learning
and advanced digital signal processing are becoming important
tools for applications deployed on ULP sensor devices [22].

This increased need for processing is in tension with the ULP
domain. The main constraint these systems face is severely
limited energy, either due to small batteries or weak energy
harvesting. One possible solution is to offload processing to
a more powerful edge device. However, communication takes
much more energy than local computation or storage [22,
40]. The only viable solution is therefore to process data
locally and transmit only a minimum of filtered/preprocessed
data, discarding the rest. This operating model has a major
implication: the capability of future ULP embedded systems
will depend largely on the energy-efficiency of the onboard
compute resources.
Existing programmable ULP devices are too inefficient:
Commercial-off-the-shelf (COTS) ULP devices are general-
purpose and highly programmable, but they pay a high energy
tax for this flexibility. Prior work has identified this failing
of COTS devices and has addressed some of the sources of
inefficiency [15, 23, 27, 47, 73]. Specifically, MANIC [23]
targeted instruction and data-movement energy, the majority of
wasted energy in COTS devices. MANIC is a big improvement
over COTS devices, but we show that designs like MANIC
still fall short due to high switching activity in the shared
execution pipeline, which is a significant inefficiency at ULP-
scale. Eliminating these overheads can reduce energy by nearly
half, proving that, despite their low operating power, existing
ULP designs are not energy-minimal.
ASICs can minimize energy, but they are too inflexible:
For any application, a custom ASIC will minimize energy
consumption. E.g., prior work has demonstrated extreme
energy efficiency on neural networks when all hardware is
specialized [7, 9, 38, 59]. But this efficiency comes at high
upfront cost and with severely limited application scope.
Applications in the ULP sensing domain are still evolving,
increasing the risk that an ASIC will quickly become obsolete.
Moreover, cost is a major consideration in these applications,
making ASIC development even harder to justify [63].
Ultra-low-power CGRAs are the answer: The goal of this
paper is to address the energy-efficiency shortcomings of
prior designs while maintaining a high degree of design
flexibility and ease of programmability. Our solution is SNAFU,1

1Simple Network of Arbitrary Functional Units.
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(a) Energy savings.
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(b) Performance.
Figure 1: SNAFU-ARCH’s energy and performance normalized to
a scalar baseline. On average, SNAFU uses 81% less energy and is
9.9× faster, or 41% less energy and 4.4× faster than MANIC.

a framework to generate ULP, energy-minimal coarse-grain
reconfigurable arrays (CGRAs). SNAFU CGRAs execute in
a spatial vector-dataflow fashion, mapping a dataflow graph
(DFG) spatially across a fabric of processing elements (PEs),
applying the same DFG to many input data values, and routing
intermediate values directly from producers to consumers. The
insight is that spatial vector-dataflow minimizes instruction and
data-movement energy, just like MANIC, but also eliminates
unnecessary switching activity because operations do not share
execution hardware.

The major difference from most prior CGRAs [21, 24, 25,
33, 42, 51, 58, 62, 68, 71, 72, 74, 75] is the extreme design
point — SNAFU operates at orders-of-magnitude lower energy
and power budget, demanding an exclusive focus on energy-
minimal design. SNAFU is designed from the ground up to
minimize energy, even at the cost of area or performance. For
example, SNAFU schedules only one operation per PE, which
minimizes switching activity (energy) but increases the number
of PEs needed (area). As a result of such design choices,
SNAFU comes within 2.6× of ASIC energy efficiency while
remaining fully programmable.

SNAFU generates ULP CGRAs from a high-level description
of available PEs and the fabric topology. SNAFU defines a
standard PE interface that lets designers “bring your own
function unit” and easily integrate it into a ULP CGRA,
along with a library of common PEs. The SNAFU framework
schedules operation execution and routes intermediate values to
dependent operations while consuming minimal energy. SNAFU
is easy to use: it includes a compiler that maps vectorized C-
code to efficient CGRA bitstreams, and it reduces design effort
of tape-out via top-down synthesis of CGRAs.
Contributions: This paper contributes the following:
• We present SNAFU, the first flexible CGRA-generator for

ULP, energy-minimal systems. SNAFU makes it easy to
integrate new functional units, compile programs to energy-
efficient bitstreams, and produce tape-out-ready hardware.

• We discuss the key design choices in SNAFU that min-
imize energy: scheduling at most one operation per PE;
asynchronous dataflow without tag-token matching; stati-
cally routed, bufferless, multi-hop NoC; and producer-side
buffering of intermediate values.

• We describe SNAFU-ARCH, a complete ULP system-on-chip
with a CGRA fabric, RISC-V scalar core, and memory. We
implement SNAFU-ARCH in an industrial sub-28 nm FinFET

process with compiled memories. SNAFU-ARCH operates
at <1 mW at 50 MHz. SNAFU-ARCH reduces energy by
81% vs. a scalar core and 41% vs. MANIC; and improves
performance by 9.9× vs. a scalar core and 4.4× vs. MANIC.

• Finally, we quantify the cost of programmability through
three comprehensive case studies that compare SNAFU-
ARCH against fixed-function ASIC designs. We find that
programmability comes at relatively low cost: on average,
SNAFU-ARCH takes 2.6× more energy and 2.1× more time
than an ASIC for the same workload. We break down SNAFU-
ARCH’s energy in detail, showing that it is possible to close
the gap further while retaining significant general-purpose
programmability. These results call into question the need
for extreme specialization in most ULP deployments.

Road map: Sec. II motivates SNAFU. Sec. III gives an overview
of SNAFU, and Secs. IV, V, and VI describe it. Secs. VII and
VIII present our evaluation methodology and results. Finally,
Sec. IX compares SNAFU to ASICs, and Sec. X concludes.

II. BACKGROUND AND MOTIVATION

Ultra-low-power embedded system are constrained by their
energy-efficiency, not raw performance. Existing commercial
ULP platforms are not energy-efficient, and prior research
designs still fall short. CGRAs offer a possible solution, but
prior CGRAs either focus on high-performance or sacrifice
design flexibility. SNAFU reconciles the demands for flexibility
and energy efficiency, letting designers easily generate ULP
CGRAs designed from the ground up to minimize energy.

A. Ultra-low-power embedded systems

Ultra-low-power embedded systems operate in a wide range
of environments without access to the power grid. These devices
rely on batteries and/or energy harvested from the environment
to power their sensors, processors, and radios. Energy efficiency
is the primary determinant of end-to-end system performance
in these embedded systems.
Battery-powered: Efficiency ⇒ Lifetime: For battery-powered
devices [14, 61], energy efficiency determines device lifetime:
once a single-charge battery has been depleted the device
is dead. Rechargeable batteries are limited in the number of
recharge cycles, and even a simple data-logging application
can wear out the battery in just a few years [32, 46].
Energy-harvesting: Efficiency ⇒ Performance: For energy-
harvesting devices [12, 28, 29, 76, 77], energy efficiency
determines device performance. These devices store energy in
a capacitor and spend most of their time powered off, waiting
for the capacitor to recharge. Greater energy efficiency leads
to less time waiting and more time doing useful work [20].
Offloading is much less efficient than local processing: Often
ULP embedded systems include low-power radios that can be
used to transmit data for offloaded processing. Unfortunately,
this is not an efficient use of energy by the ULP device [22, 40].
Communication over long distances bears a high energy and
time cost. Instead, energy is better spent doing as much onboard
computation as possible (e.g. on-device machine inference),
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Ultra-low-power CGRAs High-performance CGRAs
ULP-SRP [34] CMA [55] IPA [17] HyCube [33] Revel [75] SGMF [71] SNAFU

Fabric size 3×3 8×10 4×4 4×4 5×5 8×8 + 32 mem N×N (6×6 in
SNAFU-ARCH)

NoC Neighbors only Neighbors only Neighbors only Static, bufferless,
multi-hop

Static & dynamic
NoCs (2×)

Dynamic routing Static, bufferless,
multi-hop

PE assignment Static Static Static Static Static or dynamic Dynamic Static
Time-share PEs? Yes Yes Yes Yes Yes Yes No
PE firing Static Static Static Static Static or dynamic Dynamic Dynamic
Heterogeneous PEs? No No No No Yes Yes Yes
Buffering (approx.) — — 188 B / PE 272 B / PE ≈1 KB / PE �1 KB / PE 40 B / PE

Power 22 mW 11 mW 3–5 mW 15–70 mW 160 mW 20 W <1 mW
MOPS/mW (approx.) 30–100 100–200 140 60–90 60 60 305

Table I: Architectural comparison of SNAFU to several prior CGRAs.

and then relaying only the minimal amount of processed (e.g.,
filtered or compressed) data.
Our goal is to minimize energy: Thus, our overriding goal is
to maximize end-to-end device capability by minimizing the
energy of onboard compute. This goal is a big change from
the typical goal of maximizing performance under a power or
area envelope, and it leads SNAFU to a different design point
that prioritizes energy efficiency over other metrics.

B. Energy-minimal design

Designing for energy-minimal, ULP operation is different
than designing for other domains. This is partly because the
ULP domain is at such a radically different scale that small
changes have an outsized impact, but also because prioritizing
energy over area and performance opens up new design
tradeoffs. Unfortunately, existing ULP devices are not energy-
minimal, and prior research has only begun to understand and
address their sources of inefficiency.
COTS MCUs: Existing commercial ULP devices include ultra-
low-power microcontrollers like the MSP430 [31] or Arm
M0 [1]. These MCUs, while microarchitecturally very simple,
are not efficient because they pay a high price for general
programmability [23]. Energy is primarily wasted in supplying
instructions (fetch, decode, control) and data (register file,
caches), not performing useful work [30]. These overheads
account for a majority of total system energy.
Reducing instruction-supply energy: Vector execution reduces
instruction energy overhead by amortizing fetch, decode, and
control over many operations. There is a long history of vector
machines that span multiple computing domains [5, 8, 11, 13,
36, 37, 54]. Unfortunately, traditional vector designs use the
large vector register file (VRF) to store intermediate results,
exacerbating the energy overhead of supplying data.
Reducing data-supply energy: MANIC [23] proposed vector-
dataflow execution to eliminate unnecessary VRF accesses.
MANIC buffers a window of vector instructions and identifies
how data flows between instructions. Next, MANIC iterates
through instructions for each vector element (cf. iterating
through vector elements for each instruction), bypassing the
VRF to forward intermediate values between instructions.
MANIC was designed as a simple modification to a scalar
core in which all operations share an execution pipeline.

Unfortunately, sharing the pipeline significantly increases
switching activity as data and control signals toggle between
operations.
Designing for ULP: MANIC’s vector-dataflow execution model
is successful at reducing overall energy, but also serves as a
good example for how the ULP domain is different. First,
while VRF energy is significant, it is not as high as higher-
level memory modeling tools report [57, 65]. The overestimate
is likely due to the small size of ULP memories (a few KBs)
being out-of-scope for these tools. To evaluate ULP energy-
efficiency accurately, compiled memories are a must. Second,
at ULP-scale where efficiency is measured in µW, even small
amounts of switching in the pipeline logic is a significant cost
— a sharp contrast with high-performance designs wherein logic
is effectively free [16].
Designing to minimize energy: Even more fundamentally,
energy-minimal designs can save energy by making tradeoffs
that are unattractive in traditional designs. As explained in
Sec. V, SNAFU realizes this opportunity primarily by trading
area for energy: SNAFU-ARCH consumes 41% less energy than
MANIC, but is 1.8× larger.

C. CGRA architectures

There is a rich literature on CGRA architectures. These
architectures balance reconfigurability with energy efficiency
and performance. However, most prior CGRAs target much
higher power domains, and their design decisions do not
translate well to the ULP domain. The few CGRAs targeting
ULP operation (<1 mW) are not flexible and leave energy
savings on the table.
What is a CGRA?: A coarse-grained reconfigurable array
comprises a set of processing elements connected to each other
via an on-chip network. These architectures are coarse in that
the PEs support higher-level operations, like multiplication, on
multi-bit data words, as opposed to bit-level configurability in
FPGAs. They are also reconfigurable in that the PEs can often
be configured to perform different operations and the NoC can
be configured to route values directly between PEs. This lets
applications map a dataflow graph onto the CGRA fabric, e.g.,
the body of a frequently executed loop. Many CGRAs also sup-
port SIMD operation, amortizing the cost of (re)configuration
across many invocations. As a result, CGRAs can approach
ASIC-like energy-efficiency and performance [52].
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Figure 2: SNAFU generates ultra-low-power CGRA fabrics that
operate in a power regime not well explored by existing CGRAs.

Most CGRAs target a higher-power domain: Fig. 2 compares
the operating power of SNAFU to several recent CGRAs. The
difference is stark. A few high-performance designs operate at
power comparable to a conventional CPU/GPU [58, 71]. Most
CGRAs target a “low-power” regime at roughly 100 mW [33,
51, 68, 74, 75]. Even these designs are two orders-of-magnitude
higher power than the ULP regime SNAFU targets.

Prior ultra-low-power CGRAs: There has been some work on
ULP CGRAs in the CAD community [17, 34, 55]. Quantitative
comparison is hard due to technology differences, and it is
not always clear what is included in reported energy numbers.
These designs use VLSI techniques to reduce power (e.g.,
low-voltage design, fine-grain clock/power gating) that are
complementary to SNAFU. In contrast, our focus is architecture
for flexibility and minimal energy. One of SNAFU’s goal is to
let designers generate a ULP CGRA at reduced VLSI effort.

Contrasting SNAFU with prior CGRAs: Table I compares
SNAFU’s design to prior CGRAs along several dimensions.
Similar to DSAGEN [74] but unlike most prior work, SNAFU
is a CGRA-generator, so fabric size is parameterizable. SNAFU
minimizes PE energy by statically assigning operations to
specific PEs and, unlike prior low-power CGRAs [17, 33, 34,
55, 68], minimizes switching by not sharing PEs between
operations. Likewise, to minimize NoC energy, SNAFU im-
plements a statically configured, bufferless, multi-hop NoC,
similar to HyCube [33]. This NoC is a contrast with prior
ULP CGRAs [17, 34, 55] that restrict communication to
a PE’s immediate neighbors. Unlike many prior CGRAs
that are statically scheduled, SNAFU implements dynamic
dataflow firing to support variable latency FUs. Dynamic
dataflow firing is essential to SNAFU’s flexibility and ability to
support arbitrary, heterogeneous PEs in a single fabric. SNAFU
avoids expensive tag-token matching [25, 58] by disallowing
out-of-order execution, unlike high-performance designs [48,
56, 67, 71]. Finally, since buffers are more expensive than
combinational logic, SNAFU minimizes buffering throughout
the fabric, leading to much less state per PE than prior CGRAs.

These differences are discussed further in Sec. V. The
takeaway is that, unlike prior work, SNAFU is consistently
biased towards minimizing energy, even at the expense of area
and performance. The end result is that SNAFU is flexible and
general-purpose, while still achieving extremely low operating
power and high energy-efficiency.

Abstract CGRA 
topology

Synthesis 
and P&Rx

Standard PE 
Library

+/-

SNAFU-A

module PE
(input clk,
input  data);

SystemVerilog
Description

Standard 

interface
Bring your own 
functional 
unit

Your logic

RTL
Generation

Figure 3: Overview of SNAFU. SNAFU is a flexible framework for
generating ULP CGRAs. It takes a bring-your-own functional unit
approach, allowing the designer to easily integrate custom logic
tailored for specific domains.

III. OVERVIEW

SNAFU is a framework for generating energy-minimal, ULP
CGRAs and compiling applications to run efficiently on them.
SNAFU-ARCH is a complete ULP system featuring a CGRA
generated by SNAFU, a scalar core, and memory.
SNAFU is a flexible ULP CGRA generator: SNAFU is a
general and flexible framework for converting a high-level
description of a CGRA to valid RTL and ultimately to ULP
hardware. Fig. 3 shows SNAFU’s workflow. SNAFU takes two
inputs: a library of processing elements (PEs) and a high-
level description of the CGRA topology. SNAFU lets designers
customize the ULP CGRA via a “bring your own functional
unit” approach, defining a generic PE interface that makes it
easy to add custom logic to a generated CGRA.

With these inputs, SNAFU generates complete RTL for the
CGRA. This RTL includes a statically routed, bufferless, multi-
hop on-chip network parameterized by the topology description.
It also includes hardware to handle variable-latency timing
and asynchronous dataflow firing. Finally, SNAFU simplifies
hardware generation by supporting top-down synthesis, making
it easy to go from a high-level CGRA description to a placed-
and-routed ULP design ready for tape out.
SNAFU-ARCH is a complete ULP, CGRA-based system:
SNAFU-ARCH is a specific, complete system implementation
that includes a CGRA generated by SNAFU. The CGRA is a
6×6 mesh topology composed of PEs from SNAFU’s standard
PE library. SNAFU-ARCH integrates the CGRA fabric with a
scalar core and 256 KB of on-chip SRAM main memory. The
resulting system executes vectorized, RISC-V programs [60]
with the generality of software and extremely low power
consumption (≈300 µW). Compared to the RISC-V scalar core,
SNAFU-ARCH uses 81% less energy for equal work and is
9.9× faster. Compared to MANIC (a state-of-the-art general-
purpose ULP design), SNAFU-ARCH uses 41% less energy and
is 4.4× faster. Compared to hand-coded ASICs, SNAFU-ARCH
uses 2.6× more energy and is 2.1× slower.
Example of SNAFU in action: Fig. 4 shows the workflow to
take a simple vectorized kernel and execute it on an ULP
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1. vload v1, &a
2. vload v0, &m
3. vmuli v1.m, v1, 5
4. vredsum v3, v1
5. vstore &c, v3
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Figure 4: An example execution on a SNAFU CGRA fabric. The DFG is extracted from vectorized C-code, compiled to a bitstream, and
then executed according to asynchronous dataflow firing.

CGRA generated by SNAFU. This kernel multiplies values
at address &a by 5 for the elements where the mask m is
set, sums the result, and stores it to address &c. SNAFU’s
compiler extracts the dataflow from the kernel source code
and generates a bitstream to configure the CGRA fabric. The
scalar core configures the CGRA fabric and kicks off fabric
execution using three new instructions (vcfg, vtfr, vfence),
after which the CGRA runs autonomously in SIMD fashion
over arbitrarily many input data values. The fabric executes
the kernel using asynchronous dataflow firing:
1 In the first timestep, the two memory PEs (that load a[0]

and m[0]) are enabled and issue loads. The rest of the fabric
is idle because it has no valid input values.

2 The load for a[0] completes, but m[0] cannot due to a bank
conflict. This causes a stall, which is handled transparently by
SNAFU’s scheduling logic and bufferless NoC. Meanwhile,
the load of a[1] begins.

3 As soon as the load for m[0] completes, the multiply
operation can fire because both of its inputs have arrived.
But m[0] == 0, meaning the multiply is disabled, so a[0]
passes through transparently. The load of a[1] completes,
and loads for a[2] and m[1] begin.

4 When the predicated multiply completes, its result is
consumed by the fourth PE, which keeps a partial sum
of the products. The preceding PEs continue executing in
pipelined fashion, multiplying a[1] × 5 (since m[1] == 1)
and loading a[3] and m[2].

5 Finally, a value arrives at the fifth PE, and is stored back
to memory in c[0]. Execution continues in this fashion until
all elements of a and m have been processed and a final
result has been stored back to memory...

The next three sections describe SNAFU. Sec. IV describes the
SNAFU ULP CGRA-generator. Sec. V describes how SNAFU
minimizes energy. And Sec. VI describes SNAFU-ARCH.

IV. DESIGNING SNAFU TO MAXIMIZE FLEXIBILITY

SNAFU is designed to generate CGRAs that minimize energy,
maximize extensibility, and simplify programming. For the
architect, SNAFU automates synthesis from the top down

Processing Element

ce
nro
w
ce
nc
ol
cd
ata in ien ipr op

r
oe
n
ou
t

Configuration 
signals

On-chip 
network signals

fen
fclearfdone

Control
signals

µcfg

µcore

ucore config

Your config
Bufferless

input Router
Intermediate buffer(s)

Data buffer

Data buffer

a b op rea
dy
va
lid
do
ne z

FU-specific logic

Standardized
Interface

Configurable
number of inputs

Handles 
variable timing

m d

Figure 5: SNAFU provides a standardized interface that makes
integrating new types of PEs trivial. SNAFU handles variable-latency
logic, PE-specific configuration, and the sending and receiving of
values from the on-chip network.

and provides a “bring your own functional unit” interface,
allowing easy integration of custom FUs into a CGRA. For
the application programmer, SNAFU is designed to efficiently
support SIMD execution of vectorized RISC-V C-code, using
a custom compiler that targets the generated CGRA.

A. Bring your own functional unit (BYOFU)

SNAFU has a generic PE microarchitecture that exposes
a standard interface, enabling easy integration of custom
functional units (FUs) into the CGRA. If a custom FU
implements SNAFU’s interface, then SNAFU generates hardware
to automatically handle configuring the FU, tracking FU and
overall CGRA progress, and moderating its communication
with other PEs. There are few limitations on the sort of the
logic that SNAFU can integrate. SNAFU’s interface is designed
to support variable latency and currently supports up to four
inputs, but could be easily extended for more. The PE can
have any number of additional ports and contain any amount
of internal state.
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Fig. 5 shows the microarchitecture of a generic SNAFU
processing element, comprising two components: µcore and
µcfg. The µcore handles progress tracking, predicated execution,
and communication. The standard FU interface (highlighted
orange) connects the µcore to the custom FU logic. The µcfg
handles (re-)configuration of both the µcore and FUs.
Communication: The µcore handles communication between
the processing element and the NoC, decoupling the NoC
from the FU. The µcore is made up of an input router,
logic that tracks when operands are ready, and a few buffers
for intermediate values. The input router handles incoming
connections, notifying the internal µcore logic of the availability
of valid data and predicates. The intermediate buffers hold
output data produced by the FU. Before an FU (that produces
output) fires, the µcore first allocates space in the intermediate
buffers. Then, when the FU completes, its output data is written
to the allotted space, unless the predicate value is not set, in
which case a fallback value is passed through (see below).
Finally, the buffer is freed when all consumers have finished
using the value. These intermediate buffers are the only data
buffering in the fabric, outside of internal FU state. The NoC,
which forwards data to dependent PEs, is entirely bufferless.
The FU interface: SNAFU uses a standard FU interface for
interaction between a PE’s µcore and FU. The interface has
four control signals and several data signals. The four controls
signals are op, ready, valid, and done; the µcore drives op
and the FU is responsible for driving the latter three. op tells
the FU that input operands are ready to be consumed. ready
indicates that the FU can consume new operands. valid and
done are related: valid says that the FU has data ready to
send over the network, and done says the FU has completed
execution. The remaining signals are data: incoming operands
(a, b), predicate operands (m, d), and the FU’s output (z).

The FU-µcore interface allows the µcore to handle variable-
latency logic, making the FU’s outputs available only when
the FU completes an operation. The µcore raises back-pressure
in the network when output from an FU is not ready and stalls
the FU (by keeping op low) when input operands are not ready
or there are no unallocated intermediate buffers. When the FU
asserts both valid and done, the µcore forwards the value
produced by the FU to dependent PEs via its NoC router.
Progress tracking and fabric control: The fabric has a top-
level controller that interfaces with each µcore via three 1-bit
signals. The first enables the µcore to begin execution, the
second resets the µcore, and the third tells the controller when
the PE has finished processing all input. The µcore keeps
track of the progress of the FU by monitoring the done signal,
counting how many elements the FU has processed. When
the number of completed elements matches the length of the
computation, the µcore signals the controller that it is done.
Predication: SNAFU supports conditional execution through
built-in support for vector predication. The µcore delivers not
only the predicate m, but also a fallback value d — for when the
predicate is false — to the FU. When the predicate is true, the
FU executes normally; when it is false, the FU is still triggered

so that it can update internal state (e.g., memory index for a
strided load), but the fallback value is passed through.
Configuration services: The µcfg handles processing element
configuration, setting up a PE’s dataflow routes and providing
custom FU configuration state. Router configuration maps
inputs (a, b, m, d) to a router port. The µcfg forwards custom
FU configuration directly to the FU, which SNAFU assumes
handles its own internal configuration. The µcfg module
contains a configuration cache that can hold up to six different
configurations. The cached configurations reduce memory
accesses and allow for fast switching between configurations.
This improves both energy-efficiency and performance. It also
benefits applications with dataflow graphs too large to fit onto
the fabric. These applications split their dataflow graph into
multiple sub-graphs. The CGRA executes them one at a time,
efficiently switching between them via the configuration cache.
Note, however, that even with the configuration cache, each
fabric configuration is intended to be re-used across many input
values before switching, unlike prior CGRAs that multiplex
configurations cycle-by-cycle (Sec. II).

B. SNAFU’s PE standard library

SNAFU includes a library of PEs that we developed using
the BYOFU custom FU interface. The library includes four
types of PEs: a basic ALU, multiplier, memory (load/store)
unit, and scratchpad unit.
Arithmetic PEs: There are two arithmetic PEs: the basic
ALU and the multiplier. The basic ALU performs bitwise
operations, comparisons, additions, subtractions, and fixed-
point clip operations. The multiplier performs 32-bit signed
multiplication. Both units are equipped with the ability to
accumulate partial results, like PE #4 (vredsum) in Fig. 4.
Memory PEs: The memory PEs generate addresses and issue
loads and stores to global memory. The PE operates in two
different modes, supporting strided access and indirect access.
The memory PE also includes a “row buffer,” which eliminates
many subword accesses on accesses to a recently-loaded word.
Scratchpad PEs: A scratchpad holds intermediate values
produced by the CGRA. The scratchpad is especially useful for
holding data communicated between consecutive configurations
of a CGRA, e.g., when the entire dataflow graph is too large
for the CGRA. The PE connects to a 1 KB SRAM memory
that supports stride-one and indirect accesses. Indirect access
is used to implement permutation, allowing data to be written
or read in a specified, permuted order.

C. Generating a CGRA fabric

Generating RTL: Given a collection of processing elements,
SNAFU automatically generates a complete energy-minimal
CGRA fabric. SNAFU ingests a high-level description of the
CGRA topology and generates valid RTL. This high-level
description includes a list of the processing elements, their
types, and an adjacency matrix that encodes the NoC topology.
With this high-level description, SNAFU generates an RTL
header file. The file is used to parameterize a general RTL
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description of a generic, energy-minimal CGRA fabric, which
can then be fed through standard CAD tools.
NoC and router topology: SNAFU generates a NoC using a
parameterized bufferless router model. The router can have
any input and output radix and gracefully handles network
back-pressure. Connections between inputs and outputs are
configured statically for each configuration. Routers are mux-
based because modern CAD tools optimize muxes well.
Top-down synthesis streamlines CAD flow: Following RTL
generation, SNAFU fabrics can be synthesized through standard
CAD tools from the top down without manual intervention.
Top-down synthesis is important because SNAFU’s bufferless,
multi-hop NoC introduces combinational loops that normally
require a labor-intensive, bottom-up approach to generate
correct hardware. Industry CAD tools have difficulty analyzing
and breaking combinational loops (i.e., by adding buffers to
disable the loops). SNAFU leverages prior work on synthesizing
FPGAs (which face the problem with combinational loops
in their bufferless NoCs) from the top down to automate
this process [39, 43]. SNAFU partitions connections between
routers and PEs and uses timing case analysis to eliminate
inconsequential timing arcs. SNAFU is the first framework for
top-down synthesis of a CGRA, eliminating the manual effort
of bottom-up synthesis.

D. Compilation

The final component is a compiler that targets the gener-
ated CGRA fabric. Fig. 4 shows the compilation flow from
vectorized code to valid CGRA configuration bitstream. The
compiler first extracts the dataflow graph from the vectorized
C code. SNAFU asks the system designer (not the application
programmer) to provide a mapping from RISC-V vector ISA
instruction to a PE type, including the mapping of an operation’s
inputs and output onto an FU’s inputs and output. This mapping
lets SNAFU’s compiler seamlessly support new types of PEs.
Integer linear program (ILP) scheduler: The compiler uses an
integer linear program (ILP) formulation to schedule operations
onto the PEs of a CGRA. The scheduler takes as input the
extracted dataflow graph, the abstract instruction→PE map, and
a description of the CGRA’s network topology. The scheduler’s
ILP constraint formulation builds on prior work on scheduling
code onto a CGRA [53]. The scheduler searches for subgraph
isomorphisms between the extracted dataflow graph and the
CGRA topology, minimizing the distance between spatially
scheduled operations. At the same time, the ILP adheres to
the mappings in the abstract instruction→PE map and does
not map multiple dataflow nodes or edges to a single PE or
route. To handle PEs that are shared across multiple fabric
configurations (e.g., scratchpads holding intermediate data),
programmers can annotate code with instruction affinity, which
maps a particular instruction to a particular PE.
Scalability: Prior work has found scheduling onto a CGRA
fabric to be extremely challenging and even intractable [18, 35,
50, 74], limiting compiler scalability to small kernels. However,
this is not the case for SNAFU’s compiler because SNAFU’s

hardware makes compilation much easier: SNAFU supports
asynchronous dataflow firing and does not time-multiplex PEs
or routes. Together, these properties mean that the compiler
need not reason about operation timing, making the search
space much smaller and simplying its constraints. As a result,
SNAFU’s compiler can find an optimal solution in seconds even
for the most complex kernels that we have evaluated.
Current limitations: If a kernel is too large to fit onto the
CGRA or there is resource mismatch between the kernel and
the fabric, the tool relies on the programmer to manually
split the vectorized code into several smaller kernels that can
be individually scheduled. This is a limitation of the current
implementation, but not fundamental; a future version of the
compiler will automate this process.

V. DESIGNING SNAFU TO MINIMIZE ENERGY

SNAFU’s design departs from prior CGRAs because it is de-
signed from the ground-up to minimize energy. This difference
is essential for emerging ULP applications (Sec. II), and it
motivates several key features of SNAFU’s CGRA architecture.
This section explores these differences and explains how they
allow SNAFU to minimize energy.

A. Spatial vector-dataflow execution

Prior ULP systems: The state-of-the-art in ULP architecture
is MANIC [23]. As discussed in Sec. II, MANIC introduces
vector-dataflow execution, which amortizes instruction fetch,
decode, and control (vector) and forwards intermediate values
between instructions (dataflow). MANIC’s vector-dataflow im-
plementation parks intermediate values in a small “forwarding
buffer,” instead of the large vector register file (VRF).

MANIC reduces energy and adds negligible area, but its
savings are limited by two low-level effects that only become
apparent in a complete implementation. First, compiled SRAMs
are cheaper and scale better than suggested by high-level
architectural models [57, 65]; i.e., MANIC’s savings from
reducing VRF accesses are smaller than estimated. Second,
MANIC multiplexes all instructions onto a shared execution
pipeline, causing high switching activity in the pipeline logic
and registers as control and data signals toggle cycle-to-cycle.
Both effects limit MANIC’s energy savings.
How SNAFU reduces energy: SNAFU reduces energy by imple-
menting spatial vector-dataflow execution. Like vector-dataflow,
SNAFU’s CGRA amortizes a single fabric configuration across
many computations (vector), and routes intermediate values
directly between operations (dataflow). But SNAFU spatially
implements vector-dataflow: SNAFU buffers intermediate values
locally in each PE (vs. MANIC’s shared forwarding buffer)
and each PE performs a single operation (vs. MANIC’s shared
pipeline). Note that this design is also a contrast with prior
CGRAs, which share PEs among multiple operations to increase
performance and utilization (Table I).

As a result, SNAFU reduces both effects that limit MANIC’s
energy savings. We estimate that the reduction in switching
activity accounts for the majority of the 41% of energy savings
that SNAFU achieves vs. MANIC. The downside is that SNAFU
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takes significantly more area than MANIC. This tradeoff is
worthwhile because ULP systems are tiny and most area is
memory and I/O (see Sec. VIII). SNAFU’s leakage power
is negligible despite its larger area because we use a high-
threshold-voltage process.

B. Asynchronous dataflow firing without tag-token matching

The rest of this section discusses how SNAFU differs from
prior CGRAs, starting with its dynamic dataflow firing.
Execution in prior CGRAs: Prior CGRAs have explored both
static and dynamic strategies to assign operations to PEs and
to schedule operations [75]. Static assignment and scheduling
is most energy-efficient, whereas fully dynamic designs require
expensive tag-matching hardware to associate operands with
their operation. A static design is feasible when all operation
latencies are known and a compiler can find an efficient global
schedule. Static designs are thus common in CGRAs that do
not directly interact with a memory hierarchy [25, 33, 51].
How SNAFU reduces energy: SNAFU is designed to easily
integrate new FUs with unknown or variable latency. E.g.,
a memory PE may introduce variable latency due to bank
conflicts. A fully static design is thus not well-suited to SNAFU,
but SNAFU cannot afford full tag-token matching either.

SNAFU’s solution is a hybrid CGRA with static PE as-
signment and dynamic scheduling. (“Ordered dataflow” in
the taxonomy of prior work [75].) Each PE uses local,
asynchronous dataflow firing to tolerate variable latency. SNAFU
avoids tag-matching by enforcing that values arrive in-order.
This design lets SNAFU integrate arbitrary FUs with little energy
or area overhead, adding just ≈ 2% system energy to SNAFU-
ARCH. The cost of this design is some loss in performance
vs. a fully dynamic CGRA. Moreover, asynchronous firing
simplifies the compiler, as discussed above, because it is not
responsible for operation timing.

C. Statically routed, bufferless on-chip network

NoCs in prior CGRAs: The on-chip network (NoC) can
consume a large fraction of energy in high-performance
CGRAs, e.g., more than 25% of fabric energy [33, 51]. Buffers
in NoC routers are a major energy sink, and dynamic, packet-
switched routers cause high switching activity. Prior ULP
CGRAs avoid this cost with highly restrictive NoCs that limit
flexibility [17, 34, 55].
How SNAFU reduces energy: SNAFU includes a statically-
configured, bufferless, multi-hop on-chip network designed
for high routability at minimal energy. Static circuit-switching
eliminates expensive lookup tables and flow-control mecha-
nisms, and prior work showed that such static routing does
not degrade performance [33]. The network is bufferless (a PE
buffers values it produces; see below), eliminating the NoC’s
primary energy sink (half of NoC energy or more [44]). As a
result, SNAFU’s NoC takes just ≈ 6% of system energy.

D. Minimizing buffers in the fabric

Buffering of intermediate values in prior CGRAs: Prior
CGRAs maximize performance by forwarding values to de-
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Figure 6: Architectural diagram of SNAFU-ARCH. SNAFU-ARCH
possesses a RISC-V scalar core tightly coupled with the SNAFU fabric.
Both are attached to a unified 256 KB banked memory.

pendent PEs and buffering them in large FIFOs, freeing a
producer PE to start its next operation as early as possible.
If a dependent PE is not ready, the NoC or dependent PE
may buffer values. This approach maximizes parallelism, but
duplicates intermediate values unnecessarily.
How SNAFU reduces energy: SNAFU includes minimal in-
fabric buffering at the producer PE, with none in the NoC.
Buffering at the producer PE means each value is buffered
exactly once, and overwritten only when all dependent PEs
are finished using it. In SNAFU-ARCH, producer-side buffering
saves ≈ 7% of system energy vs. consumer-side buffering. The
cost is that a producer PE may stall if a dependent PE is not
ready. SNAFU minimizes the number of buffers at each PE;
using just four buffers per PE by default (Sec. VIII evaluates
SNAFU’s sensitivity to the number of buffers per PE).

VI. SNAFU-ARCH: A COMPLETE ULP SYSTEM W/ CGRA

SNAFU-ARCH is a complete ULP system that includes a
CGRA fabric generated by SNAFU integrated with a scalar
RISC-V core and memory.

A. Architectural overview

Fig. 6 shows an overview of the architecture of SNAFU-
ARCH. There are three primary components: a RISC-V scalar
core, a banked memory, and the SNAFU fabric. The SNAFU
fabric is tightly coupled to the scalar core. It is a 6×6 mesh
possessing 12 memory PEs, 12 basic-ALU PEs, 8 scratchpad
PEs, and 4 multiplier PEs. The RTL for the fabric is generated
using SNAFU and the mesh topology shown. The memory PEs
connect to the banked memory, while the scratchpad PEs each
connect to 1 KB outside the fabric.

The RISC-V scalar core implements the E, M, I, and C
extensions and issues control signals to the SNAFU fabric. The
banked memory has eight 32 KB memory banks (256 KB total).
In total there are 15 ports to the banked memory: thirteen
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Instruction Purpose

vcfg <len> <addr> Load a new fabric configuration and set
vector length.

vtfr <val> <pe> Communicate scalar value to fabric.
vfence Start fabric execution and wait.

Table II: New instructions to interface with CGRA.

from the SNAFU fabric and two from the scalar core. The
twelve memory PEs account for the majority of the ports from
the fabric. The final port from the fabric allows the SNAFU
configurator to load configuration bitstreams from memory.
Each bank of the main memory can execute a single memory
request at a time; its bank controller arbitrates requests using
a round-robin policy to maintain fairness.

B. Example of SNAFU-ARCH in action

SNAFU-ARCH adds three instructions to the scalar core to
interface with the CGRA fabric, summarized in Table II. We
explain how they work through the following example.

The SNAFU fabric operates in three states: idle, configuration,
and execution. During the idle phase the scalar core is running
and the fabric is not. When the scalar core reaches a vcfg
instruction, the fabric transitions to the configuration state. The
scalar core passes a vector length and a bitstream address (from
the register file) to the fabric configurator (see Fig. 6). The
configurator checks to see if this configuration is still in the
fabric’s configuration cache (Sec. IV-A). If it is, the configurator
broadcasts a control signal to all PEs and routers to load
the cached configuration; otherwise, it loads the configuration
header from memory. The header tells the configurator which
routers and which PEs are active in the configuration. Then the
configurator issues a series of loads to read in configuration
bits for the enabled PEs and routers.

Once this has completed, the configurator stalls until the
scalar core either reaches a vtfr instruction or a vfence
instruction. vtfr lets the scalar core pass a register value
to the fabric configurator, which then passes that value to a
specific PE (encoded in the instruction). This allows PEs to be
further parameterized at runtime from the scalar core. vfence
indicates that configuration is done, so the scalar core stalls and
the fabric transitions to execution. Execution proceeds until all
PEs signal that they have completed their work (Sec. IV-A).
Finally, the scalar core resumes execution from the vfence,
and the fabric transitions back into the idle state.

VII. EXPERIMENTAL METHODOLOGY

We implemented SNAFU-ARCH as well as three baselines
entirely in RTL and synthesized each system using an industrial
sub-28 nm FinFET process with compiled memories. We
evaluated the systems using post-synthesis timing, power, and
energy models. Additionally, we placed and routed SNAFU-
ARCH (see Fig. 7) to validate top-down synthesis.
Software-hardware stack: We developed a complete software
and hardware stack for SNAFU. We implemented SNAFU-
ARCH, its 256 KB banked memory, and its five-stage pipelined
RISC-V scalar core in RTL and verified correctness by running
full applications in simulation using both Verilator [66] and

Main memory

Memory control logic
Scalar core

NoC incl. routers

Scratchpad units

Memory units

Basic-ALU units

Multiplier units

Figure 7: Layout of SNAFU-ARCH. Memory PEs are blue, scratchpad
PEs are green, basic-ALU PEs are red, multiplier PEs are purple, the
scalar core is yellow, and main-memory control logic is orange. The
remaining grey regions contain routers and wires.

Parameter Values

Frequency 50 MHz
Main memory 256 KB
Scalar register # 16

V
ec

to
r Vector register # 16

Vector length 16/32/64
Window size (for MANIC) 8

S
N

A
F

U
-A

R
C

H Fabric dimensions 6×6
Memory PE # 12
Basic-ALU PE # 12
Multiplier PE # 4
Scratchpad PE # 8

Table III: Microarchitectural parameters.

Cadence Xcelium RTL simulator [6]. We synthesized the design
using Cadence Genus [2] and an industrial sub-28 nm, high-
threshold voltage FinFET PDK with compiled memories. Next,
we placed and routed the design using Cadence Innovus [3];
Fig. 7 shows the layout. We also developed SNAFU’s compiler
that converts vectorized C-code to an optimal fabric config-
uration and injects the bitstream into the application binary.
Finally, we simulated full applications post-synthesis, annotated
switching, and used Cadence Joules [4] to estimate power.
Baselines: We compare SNAFU-ARCH against three baseline
systems: (i) a RISC-V scalar core with a standard five-stage
pipeline, (ii) a vector baseline that implements the RISC-V V
vector extension, and (iii) MANIC [23], the prior state-of-the-art
in general-purpose ULP design. The scalar core is representative
of typical ULP microcontrollers like the TI MSP430 [31]. Each
baseline is implemented entirely in RTL using the same design
flow. Table III shows their microarchitectural parameters. The
vector baseline and MANIC both have a single vector lane,
which minimizes energy at the cost of performance.
Benchmarks: We evaluate SNAFU-ARCH, MANIC, and the
vector baseline across ten benchmarks on three different input
sizes, shown in Table IV. We use random inputs, generated
offline. For MANIC and the vector baseline, each benchmark has
been vectorized from a corresponding plain-C implementation.
For SNAFU-ARCH, these vectorized benchmarks are fed into
our compiler to produce CGRA-configuration bitstreams. In
cases where the benchmarks contain a permutation, the kernel is
manually split and pieces are individually fed into our compiler.
Metrics: We evaluate SNAFU-ARCH and the baselines primarily
on their energy efficiency and secondarily on their performance.
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(b) Execution time
Figure 8: Energy and execution time, normalized to the scalar baseline, across ten applications on large inputs. On average, SNAFU-ARCH
uses 81%, 57%, 41% less energy and is 9.9×, 3.2×, and 4.4× faster than the scalar design, vector baseline, and MANIC, respectively.

Name Description Small Medium Large

FFT 2D Fast-fourier transform 16×16 32×32 64×64
DWT 2D Discrete wavelet trnsfrm 16×16 32×32 64×64
Viterbi Viterbi decoder 256 1024 4096
Sort Radix sort 256 512 1024
SMM Sparse matrix-matrix 16×16 32×32 64×64
DMM Dense matrix-matrix 16×16 32×32 64×64
SMV Sparse matrix-dense vector 32×32 64×64 128×128
DMV Dense matrix-dense vector 32×32 64×64 128×128
Sconv Sparse 2D convolution

filter:
16×16,
3×3

32×32,
5×5

64×64,
5×5

Dconv Dense 2D convolution
filter:

16×16,
3×3

32×32,
5×5

64×64,
5×5

Table IV: Benchmarks and their input sizes.

We measure the full execution of each benchmark after
initializing the system, and we measure efficiency by the energy
to execute the complete benchmark normalized to either the
scalar baseline or SNAFU-ARCH. We measure performance by
execution time (cycles) or speedup normalized to either the
scalar baseline or SNAFU-ARCH.

VIII. EVALUATION

We now evaluate SNAFU-ARCH to show: (1) SNAFU-ARCH
is significantly more energy-efficient than the state-of-the-
art. (2) Secondarily, SNAFU-ARCH significantly improves
performance over the state-of-the-art. (3) SNAFU-ARCH is
an optimal design point across input, configuration cache, and
intermediate-buffer sizes. (4) SNAFU is easily extended with
new PEs to improve efficiency. (5) Significant opportunities
remain to improve efficiency in the compiler.

A. Main results

Fig. 8 shows that SNAFU-ARCH is much more energy-
efficient and performant vs. all baselines. The figure shows
average energy and speedup of SNAFU-ARCH normalized to
the scalar baseline. SNAFU-ARCH uses 81%, 57%, and 41%
less energy than the scalar, vector, and MANIC baselines,
respectively. SNAFU-ARCH is also highly performant; it is
9.9×, 3.2×, and 4.4× faster than the respective baselines.
1) SNAFU-ARCH saves significant energy: Fig. 8 shows
detailed results for all ten benchmarks. Fig. 8a breaks down ex-

ecution energy between memory, the scalar core, vector/CGRA,
and remaining (other). SNAFU-ARCH outperforms all baselines
on each benchmark. This is primarily because SNAFU-ARCH
implements spatial vector-dataflow execution. Vector, MANIC,
and SNAFU-ARCH all benefit from vector execution (SIMD),
significantly improving energy-efficiency and performance
compared to the scalar baseline by eliminating much of the
overhead of instruction fetch and decode. However, SNAFU-
ARCH benefits even more from vector execution because, once
SNAFU-ARCH’s fabric is configured, it can be re-used across
an unlimited amount of data (unlike the limited vector length
in the vector baseline and MANIC).

Moreover, only SNAFU-ARCH takes advantage of spatial
dataflow. The vector baseline writes all intermediate results to
the vector register file, which is quite costly. MANIC eliminates
a majority of these VRF accesses (saving 27% energy compared
to the vector baseline) by buffering intermediate values in a less
expensive “forwarding buffer.” However, MANIC shares a single
execution pipeline across all instructions, which significantly
increases switching activity. SNAFU-ARCH, on the other hand,
executes a dataflow graph spatially. Each PE only handles a
single operation and routes are configured statically. This leads
to significantly less dynamic energy because intermediate values
are directly communicated between dependent operations and
there is minimal switching in PEs.
2) SNAFU-ARCH also greatly improves performance: Fig. 8b
shows the execution time (in cycles) of all benchmarks and
systems. Across the board, SNAFU-ARCH is faster — from
3.2× to 9.9× on average, depending on the baseline. SNAFU-
ARCH achieves this high-performance by exploiting instruction-
level parallelism in each kernel, which is naturally achieved
by SNAFU’s asynchronous dataflow-firing at each PE.
3) SNAFU-ARCH is ultra-low-power and has a small footprint:
The SNAFU-ARCH fabric operates between 120 µW and
324 µW, depending on the workload, achieving an estimated
305 MOPS/mW. This operating power domain is two to five
orders-of-magnitude less than most prior CGRA designs.
Leakage power is also insignificant (<3%) because SNAFU-
ARCH uses a high-threshold-voltage process.
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Figure 9: SNAFU-ARCH vs. the scalar
design across three input sizes – small (S),
medium (M) and large (L).
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Figure 10: Energy and speedup of MANIC, unMANIC (w/ loop unrolling), SNAFU-ARCH, and
unSNAFU-ARCH (w/ loop unrolling), normalized to SNAFU-ARCH. unSNAFU-ARCH uses 31%
less energy and is 2.2× faster SNAFU-ARCH; MANIC benefits much less.

In addition, SNAFU-ARCH is tiny. The entire design in Fig. 7,
including compiled memories, is substantially less than 1 mm2.
Note, however, that SNAFU-ARCH saves energy at the cost of
area: SNAFU-ARCH occupies 1.8× more area than MANIC and
1.7× more than the vector baseline. Given SNAFU-ARCH’s
tiny size, we judge this to be a good tradeoff.
Benchmark analysis: SNAFU-ARCH is especially energy-
efficient on dense linear algebra kernels and sort. SNAFU-ARCH
uses on average 49% less energy on average for DMM, DMV,
and DConv vs. 35% less on average for SMM, SMV, and
SConv. This is because the dense linear algebra kernels take
full advantage of coalescing in the memory PEs and generally
have fewer bank conflicts, reducing energy and increasing
performance (5.8× vs. 3.8×).

Sort is another interesting benchmark because MANIC barely
outperforms the vector baseline, while SNAFU-ARCH reduces
energy by 72%. (The scalar baseline performs terribly due to
a lack of a good branch predictor.) This gap in energy can be
attributed to the unlimited vector length of SNAFU-ARCH: the
vector length of both vector and MANIC baselines is 64, but
the input size to Sort is 1024. SNAFU-ARCH is able to sort
the entire vector with minimal re-configuration and buffering
of intermediate values.

B. Sensitivity studies

We characterize SNAFU-ARCH by running applications
on three different input sizes. Further, we find the optimal
configuration of SNAFU-ARCH by sweeping the size of the
configuration cache and the number of intermediate buffers.
Energy-efficiency and performance improve on larger work-
loads: Fig. 9a shows SNAFU-ARCH’s energy across three
different input sizes: small (S), medium (M), and large (L).
For most applications, SNAFU-ARCH’s benefits increase with
input size. (But SNAFU-ARCH is faster and more efficient at all
input sizes.) As input size increases, SNAFU-ARCH generally
widens the gap in energy-efficiency with the scalar baseline,
from 67% to 81%. SNAFU-ARCH also improves vs. the vector
baseline from 39% to 57% and vs. MANIC from 37% to 41%
(not shown). The primary reason for this improvement is that,
with larger input sizes, SNAFU-ARCH can more effectively
amortize the overhead of (re)configuration.

This trend is even more pronounced in the performance data.
Fig. 9b shows the speedup of SNAFU-ARCH normalized to the

Memory Scalar Vec/CGRA Remaining
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Figure 11: Energy and speedup of MANIC, SNAFU-ARCH w/ and
w/out scratchpads, normalized to SNAFU-ARCH. Scratchpads improve
energy-efficiency by 34% and performance by 13%.

scalar baseline. SNAFU-ARCH is 9.9×, 3.2×, 4.4× faster than
the scalar baseline, vector baseline, and MANIC on the large
input size and 5.4×, 2.4×, and 3.4× faster on the small input.
SNAFU’s optimal parameterization: We considered designs
with different configuration cache sizes (1, 2, 4, 6, and 8) and
different numbers of intermediate buffers (1, 2, 4, and 8). For
all applications except FFT, DWT, and Viterbi, configuration-
cache size makes little difference. FFT, DWT, and Viterbi
realize an average 10% energy savings with a size of six
entries. This is because these applications have up to six phases
of computation, and each phase requires a different fabric
configuration. Similarly, most applications are insensitive to
the number of intermediate buffers. With too few buffers, PEs
stall due to lack of buffer space. Two buffers is enough to
eliminate most of these stalls, and four buffers is optimal.

C. Case studies

We conduct two case studies (i) to show that there are
opportunities to further improve performance and energy
efficiency with only software changes; and (ii) to demonstrate
the flexibility of SNAFU’s BYOFU approach.
Loop-unrolling leads to significantly improved energy and
performance: We show the potential of further compiler
optimizations through a case study on loop unrolling. Fig. 10
shows the normalized energy and speedup of MANIC and
SNAFU-ARCH with and without loop unrolling on four different
applications. With loop unrolling, SNAFU-ARCH executes four
iterations of an inner loop in parallel (vs. one iteration without
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Figure 12: Quantifying the cost of SNAFU’s programmability on three benchmarks. Each subfigure shows, from left-to-right, the effect
of gradually removing SNAFU-ARCH’s programmability and increasing its specialization, culminating in a hand-coded ASIC. Overall,
SNAFU-ARCH’s energy is within 2.6× on average of the ASICs’, and can be easily specialized to narrow the gap at low upfront design cost.

loop unrolling). On average, with loop unrolling, SNAFU-
ARCH’s energy efficiency improves by 85%, 71%, 62%, and
33% vs. scalar, vector, MANIC, and SNAFU-ARCH without
unrolling. The performance results are even more significant:
with loop unrolling, SNAFU-ARCH’s speedup improves to 19×,
7.5×, 11×, and 2.2× vs. the same set of baselines. These
results make it clear that SNAFU-ARCH can effectively exploit
instruction-level parallelism and that there is an opportunity
for the compiler to further improve efficiency.
SNAFU makes it easy to add new FUs: Initially, SNAFU-
ARCH did not have scratchpad PEs. However, FFT and DWT
produce permuted results that must be persisted between re-
configurations of the fabric. Without scratchpad units, these
values were being communicated through memory.

Leveraging SNAFU’s standard PE interface, we were able
to quickly add scratchpad PEs to SNAFU-ARCH with minimal
effort — we just made SNAFU aware of the new PE, without
any changes to SNAFU’s framework. Fig. 11 shows the
normalized energy and speedup of SNAFU-ARCH with and
without scratchpads for FFT and DWT. Persisting intermediate
values to main memory is quite expensive: without scratchpads,
SNAFU-ARCH consumes 54% more energy and is 16% slower
on average. The flexibility of SNAFU allowed us to easily
optimize the SNAFU-ARCH fabric for FFT and DWT at
low effort, without affecting other benchmarks. The next
section explores the implications for programmability and
specialization.

IX. THE COST OF PROGRAMMABILITY

With the mainstream acceptance of architectural special-
ization, the architecture community faces an ongoing debate
over the ideal form and degree of specialization. Some results
suggest a need for drastic specialization to compete with
ASICs [26, 64, 70]; whereas others argue that programmable
designs can compete by adopting a non-von Neumann execution
model [49, 52].

We contribute to this debate by performing an apples-to-
apples comparison of a programmable design (SNAFU-ARCH)
against three hand-coded ASICs, demonstrating that the cost of
programmability is low in the ULP domain. We compare end-
to-end systems in the same technology and design flow using

an industrial PDK with compiled memories. Our results thus
avoid pitfalls of prior studies based on simulations, analytical
models, or extrapolations from different technologies.

We find that, on average, SNAFU-ARCH uses 2.6× more
energy and 2.1× more time than an ASIC implementation.
Breaking down the sources of inefficiency in SNAFU-ARCH,
we find that SNAFU lets designers trade off programmability
and efficiency via simple, incremental design changes. SNAFU
makes selective specialization easy, letting the architect focus
their design effort where it yields the most efficiency gains.
SNAFU is within 2.6× of ASIC energy: Fig. 12 shows the
energy of DMM, Sort, and FFT on large inputs. The leftmost
bars in Fig. 12 represent SNAFU-ARCH and the rightmost
bars represent a fixed-function, statically scheduled ASIC
implementation of the same algorithm. SNAFU-ARCH uses
as little as 1.8× and on average 2.6× more energy than the
ASICs. To explain the gap, we now consider intermediate
designs that build up from the ASIC back to SNAFU-ARCH.
SNAFU-ARCH, inner loops, & Amdahl’s Law: SNAFU maps
only inner loops to its fabric and runs outer loops on the scalar
core, limiting its benefits to the fraction of dynamic execution
spent in inner loops. To make a fair comparison, we built
ASICs for DMM and FFT that accelerate only the inner-loop
of the kernel (DOT-ACCEL and FFT1D-ACCEL), just like
SNAFU-ARCH. These designs add 33% energy to run outer
loops on the scalar core, reducing the energy gap to 2.2× (vs.
2.5× for these benchmarks previously). A future version of
SNAFU could eliminate this extra scalar energy by mapping
outer loops to its fabric [75].
Asynchronous dataflow firing adds minimal overhead: Next,
we add asynchronous dataflow firing to the ASIC designs
(∗-ASYNC bars). Comparing ASYNC designs to the ASICs
shows that asynchronous dataflow firing adds little energy
overhead, just 3% in DMM and Sort. The 30% overhead in FFT-
ASYNC is inessential and could be optimized away: SNAFU’s
current implementation of asynchronous dataflow firing adds an
unnecessary pipeline stage when reading scratchpad memories
in the ASIC designs.
Closing the gap with negligible design effort: Next, we
consider variants of SNAFU-ARCH to break down the cost
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of software programmability. SNAFU-BESPOKE hardwires the
fabric configuration, eliminating unused logic during synthesis
(like prior work [10]), removing SNAFU-ARCH’s software
programmability. SNAFU-BESPOKE uses 54% more energy
than the ASYNC designs. The gap in energy with ASYNC can
be attributed to SNAFU’s logic for predicated execution and the
operation set that SNAFU implements, which is not well suited
to every application. For instance, SORT-ACCEL can select bits
directly, whereas SNAFU must do a vshift and vand.
BYOFU makes it easy to specialize where it matters: SNAFU’s
flexible, “bring your own functional unit” design (Sec. IV-A)
makes it easy to add missing operations to improve efficiency.
To illustrate this, Sort-BYOFU and FFT-BYOFU improve
SNAFU-BESPOKE’s efficiency by adding specialized PEs to
the fabric. For Sort, we add a PE that fuses vshift and vand
operations. For FFT, we size scratchpads properly for their
data. In both cases, the energy savings are significant. SNAFU-
BESPOKE uses 20% more energy than the BYOFU designs, and
the BYOFU designs come within 44% of the ASYNC ASIC
designs. These savings come with much lower design effort
than a full ASIC, and we expect the gap would narrow further
if more BYOFU PEs were added to the fabric.
The cost of software programmability is low: Next, SNAFU-
TAILORED specializes the CGRA to eliminate extraneous PEs,
routers, and NoC links, but is not hardwired like SNAFU-
BESPOKE or SNAFU-BYOFU — i.e., SNAFU-TAILORED is
where the design becomes programmable in software. SNAFU-
TAILORED uses only 15% more energy than SNAFU-BESPOKE,
illustrating that the cost of software programmability is low.

The original SNAFU-ARCH design uses just 10% more
energy than SNAFU-TAILORED. This gap includes the cost of
PEs, routers, and links that are not needed by every application,
but may be used by some. This gap is also small, suggesting
that general-purpose programmability also has a low cost.

The above comparisons yield three major takeaways. The
big picture is that the total cost of SNAFU’s programmability
is 2–3× in energy and time vs. a fully specialized ASIC.
While significant, this gap is much smaller than the 25× (or
larger) gap found in some prior studies [26].2 Whether further
specialization is worthwhile will depend on the application;
for many applications, a 2–3× gap is good enough [63].

Moreover, for applications that benefit from more specializa-
tion, SNAFU allows for selective specialization with incremen-
tal design effort to trade off efficiency and programmability.
Fig. 12 shows that by tailoring the fabric topology, hardwiring
configuration state, or partially specializing PEs, designers
can get within 2× of ASIC efficiency at a small fraction of
ASIC design effort. Designers can incrementally scale their
design effort to the degree of specialization appropriate for
their application.

Finally, digging deeper, we can better understand the cost
of programmability as separate costs incurred at design time

2The smaller gap comes from comparing to a programmable design that
exploits both vector and dataflow techniques to improve efficiency [49, 52].

(i.e., hardware implementation quality) and run time (i.e.,
overhead for running software). With current synthesis tools,
software programmability itself is surprisingly cheap, but
carries a hidden design-time cost: the gap between SNAFU
and SNAFU-BESPOKE is just 27%, whereas the gap between
SNAFU-BESPOKE and ASICs is 2.1×. Even when runtime re-
configurability is removed from a design, synthesis tools cannot
produce circuits similar to a hand-coded ASIC because they
do not understand the intent of RTL. Barring a breakthrough
in synthesis, this challenge will remain. SNAFU provides a
path forward: BYOFU lets a designer specialize for critical
operations, enabling programmable designs to compete with
ASICs at a fraction of the design effort and without forfeiting
programmability.

X. CONCLUSIONS

This paper presented SNAFU, a framework for generating
ultra-low-power CGRAs. SNAFU maximizes flexibility while
minimizing energy. It takes a bring your own functional unit
approach, allowing easy integration of custom logic, and it
minimizes energy by aggressively favoring efficiency over
performance throughout the design. We used SNAFU to generate
SNAFU-ARCH, a complete ULP CGRA system that uses 41%
less energy and is 4.4× faster than the prior state-of-the-
art general-purpose ULP system. Moreover, SNAFU-ARCH is
competitive with ASICs and can be incrementally specialized
to trade off efficiency and programmability.
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