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1 Introduction

Ultra-low-power (ULP) sensor devices are increasingly being deployed for a variety of use-cases
in many different environments. The applications are wide-ranging and growing in complexity,
including monitoring civil infrastructure, in-body health sensing and tiny, chip-scale satellites.
Increasingly these applications rely on sophisticated techniques like on-device machine inference
and advanced digital signal processing to reason about sensor data. However, existing systems
suffer fundamental inefficiencies that demand solutions across the compute stack: from software that
enables sophisticated workloads on ULP devices to new, energy-minimal computer architectures.

Sensing workloads are increasingly sophisticated: Sensor devices collect data from a deployed
environment and must process the data to support applications. Processing varies and may entail
digital signal processing (DSP), computing statistics, sorting, or sophisticated computations such as
machine learning (ML) inference using a deep neural network (DNN). As processing sophistication
has increased, sensor device capability also has matured to include high-definition image sensors [1]
and multi-sensor arrays [2], increasing sensed data volume.

This shift poses a challenge: how can we perform sophisticated computations on simple, ultra-
low-power systems? One design is to offload work by wirelessly transmitting data to a more powerful
nearby computer (e.g., at the “edge” or cloud) for processing. In offloading, the more data a sensor
produces, the more data the device must communicate. Unfortunately, transmitting data takes much
more energy per byte than sensing, storing, or computing on those data [3,4]. While a high-powered
device like a smartphone, with a high-bandwidth, long-range radio, can afford to offload data to the
edge or cloud, this is not practical for power-, energy-, and bandwidth-limited sensor devices [3, 5].
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Local compute reduces cost of communication: Since offloading is infeasible, the alternative
is to process data locally on the sensor node itself. My work, Sonic, demonstrates how systems can
use commodity off-the-shelf microcontrollers (COTS MCU) to filter sensed data locally so that only
meaningful data (as defined by the application) are transmitted. Processing data locally minimizes
the high energy cost of communication, reducing energy by ≈ 20× compared to a design that always
offloads, but makes the application highly sensitive to the energy-efficiency of computation.

Energy-efficiency is critical to end-to-end system performance: Energy efficiency is the
primary determinant of end-to-end system performance in ULP embedded systems. For battery-
powered devices [6, 7], energy efficiency determines device lifetime: once a single-charge battery has
been depleted the device is dead and it is impractical to replace the battery on millions of deployed
devices. Even rechargeable batteries are limited in the number of recharge cycles, and a simple
data-logging application can wear out the battery in just a few years [8, 9]. For energy-harvesting
devices [10–14], energy efficiency determines device performance. These devices store energy in a
capacitor and spend most of their time powered off, waiting for the capacitor to recharge. Greater
energy efficiency leads to less time waiting and more time doing useful work [15].

Existing devices are energy-inefficient: However, ULP COTS MCUs used in many deeply
embedded sensor nodes (e.g., TI MSP430, ARM M0+ & M4+) are energy-inefficient. These MCUs
are general-purpose, programmable devices that support a variety of applications. But this generality
comes at at a high power, energy, and performance cost.

Programmability is expensive in two main ways [16–18]. First, instruction supply consumes
significant energy: in the best case, the energy of an instruction cache hit, and in the worst case, the
energy of a main memory read and instruction cache fill. Lacking sophisticated microarchitectural
features such as superscalar and out-of-order execution pipelines [19, 20], the energy overhead of
instruction supply constitutes a significant fraction of total operating energy. Second, data supply
through register file (RF) access also consumes significant energy. Together, instruction and data
supply can consume 54.4% of the average execution energy across a variety of representative workloads
for ULP devices.

Specialization can limit programmability: To combat the energy costs of generality, some
recent work has turned to microarchitectural specialization, making a system energy-efficient at the
expense of generality and programmability [21–26]. Specialization customizes a system’s control and
datapath to accommodate a particular workload (e.g., deep neural networks [21,22]), eliminating
inessential inefficiencies like instruction supply and RF access. The downsides of specialization are
its high non-recurring engineering cost and its inability to support a wide range of applications.
Given the emerging nature of applications in the ULP domain, specialization is premature, so new
ULP, energy-efficient, but highly-programmable architectures are needed.

Existing execution models are flawed: Furthermore, both fixed-function ASIC designs and
COTS scalar designs assume a trade-off between programmability and energy-efficiency that may be
questionable. The fixed-function execution model of ASIC designs limits programmability, while
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Figure 1: Proposed system stack – from software to silicon – that maximizes energy-efficiency without
compromising on programmability and generality.

the scalar execution model of COTS MCUs wastes significant energy. These execution models
are at the extremes; there is room in the middle for alternative execution models that balance
programmability and energy-efficiency. For example, one starting point is vector execution, which
slightly reduces programmability, but amortizes instruction supply energy improving overall energy-
efficiency. Developing new execution models, therefore, is critical to resolving the tension between
programmability and energy-efficiency.

Objective of this work: The objective of this work is to design a complete system stack that
leverages new execution models to maximize energy-efficiency without sacrificing programmability.
This approach enables new applications in the ULP domain as improved energy efficiency makes
sophisticated workloads practical, while maintaining support for programmability allows for iteration,
development of new algorithms, and quick deployment. My existing work addresses two levels of the
stack – software and computer architecture – while my proposed work will investigate compilation
and silicon implementation. Together these works support the following thesis:

High energy-efficiency can be achieved across the system stack from software to silicon
without compromising on programmability by leveraging new execution models to reduce
instruction and data supply energies.

The following contributions form the basis for the thesis and new system stack.

SONIC is the first demonstration of DNN inference on energy-harvesting device: Sonic

is an intermittence-aware software system with specialized support for DNN inference. It runs
optimized networks found using GENESIS, a tool that automatically compresses networks to
balance inference accuracy and energy. Sonic introduces loop continuation, a new technique that
dramatically reduces the cost of guaranteeing correct intermittent execution for loop-heavy code
like DNN inference. Across three neural networks on a commercially available MCU, Sonic reduces
inference energy by 6.9× over the state-of-the-art.

MANIC is energy-efficient vector-dataflow co-processor: Manic is an efficient vector-dataflow
architecture for ultra-low-power embedded systems. It achieves high energy-efficiency without sacri-
ficing programmability and generality. Manic introduces vector-dataflow execution, allowing it to
exploit the dataflows in a sequence of vector instructions and amortize instruction fetch and decode
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over a whole vector of operations. By forwarding values from producers to consumers, Manic avoids
costly vector register file reads. By carefully scheduling code and avoiding dead register writes,
Manic avoids costly vector register writes. On average, Manic is 2.8× more energy efficient than a
scalar baseline and 38.1% more energy-efficient than a vector baseline.

SNAFU generates ULP CGRAs: Snafu builds on Manic’s vector-dataflow execution model,
generating ULP course-grain reconfigurable arrays (CGRAs) that implement spatial-vector-dataflow
execution. In spatial-vector-dataflow execution, a dataflow graph (DFG) is mapped spatially across
the fabric of processing elements, applying the same DFG to many input data values, and routing
intermediate values directly from producers to consumers. This minimizes instruction and data-
movement energy, just like Manic, and eliminates unnecessary switching activity because operations
do not share execution hardware. Snafu uses 41% less energy and runs 4.4× faster than Manic.

Proposed work fills out the rest the stack: My proposed work on compilation and silicon
implementation round out the new system stack. Manic-Silicon is a silicon implementation of
the Manic microarchitecture, serving as the ultimate validation of the vector-dataflow execution
model. The testchip includes several designs that implement different execution models – from scalar
and vector to application-specific. Measuring power and energy directly from the testchip allows
for a fair comparison between vector-dataflow and alternative execution models. Further a physical
prototype unlocks future research directions in applications and sensor deployments.

At other other end of stack is CGRA compilation. Compiling general-purpose code to a CGRA
is a challenging problem. There is a fundamental tension between energy-efficiency, generality,
and scalability. This leads to two core research questions. The first has to do with division of
responsibility between the compiler/software and the hardware. Snafu showed that compilation can
be scalable with minimal impact on energy-efficiency by making hardware responsible for scheduling
in time and the compiler responsible for scheduling in space. But it is unclear how this changes
with increased generality. The second research question has to do with programming interface.
A functional interface trades generality for energy-efficiency, while an imperative interface (using
languages C/C++) may trade energy-efficiency for increased generality. Finding solutions to these
two research questions will have major implications for the hardware and the types of programs that
can be compiled and run on it.

Outline of remaining sections: The remainder of the proposal is split into four sections. Sec. 2
will describe Sonic, Manic, and Snafu, providing the necessary background and context for
understanding subsequent sections. Sec. 3 will detail 1) the tape-out and evaluation of the Manic

silicon prototype and 2) the development of a compiler to target Snafu. Finally, Sec. 4 will provide
timelines for proposed work to be completed and Sec. 5 will conclude.
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2 Completed Work

The following section provides a summary of completed work, describing several components of
the new system stack and establishing necessary context for ongoing and future work. Sec. 2.1
describes deploying deep neural networks (DNNs) on intermittent, energy-harvesting devices and
the limitations of existing commodity devices; Sec. 2.2 describes Manic, a new vector-dataflow
architecture to minimize energy; finally, Sec. 2.3 describes Snafu, a new spatial-vector-dataflow
CGRA-generation framework and architecture.

2.1 Deploying DNNs on intermittent embedded devices

Energy-harvesting technology provides a promising platform for future IoT applications. However,
since communication is very expensive in these devices, applications will require inference “beyond
the edge” to avoid wasting precious energy on pointless communication. Unfortunately, existing
ULP, energy-harvesting, sensors are severely resource constrained and suffer frequent power failures.
This makes deploying complex applications that rely on machine inference difficult. The following
summarizes Sonic, a software runtime system specialized for DNN inference, that overcomes these
challenges. Sonic is the first to demonstrate DNN inference on an energy-harvesting system
and reduces energy by 6.9× v. the prior-state-the-art. In spite of this, Sonic also exposes the
limitations of existing COTS MCUs and execution models, calling for new computer architectures.
Intermittent, energy-harvesting devices enable new applications: Energy-harvesting devices

operate using energy extracted (using e.g. solar cells, radio-frequency-harvester, etc) from their
environment. This energy can recharge a battery or be buffered in a capacitor. The option to use
a capacitor allows these devices to be deployed to environments (e.g. too hot or cold) unsuitable
for batteries. Harvested energy is not continuously available, however, so an energy-harvesting
device operates intermittently as energy allows. At the same time, many future IoT applications will
require frequent decision making, such as when to trigger a battery-draining camera or communicate
interesting sensor data. This will require intelligence beyond the edge to effectively make use of
harvested energy.

The case for local inference: Many applications today offload most computation to the cloud by
sending input data to the cloud and waiting for a response. Unfortunately, communication is not
free. In fact, on energy-harvesting devices, communication costs orders-of-magnitude more energy
than local computation and sensing. These high costs mean that it is inefficient and impractical for
energy-harvesting devices to offload inference to the edge or cloud, even on today’s most efficient
network architectures. The solution is Sonic which enables local inference to filter sensor data so
only important data is transmitted, minimizing communication.

Why accuracy matters: Inference accuracy determines end-to-end application performance, mo-
tivating the use of DNNs. Sonic proposes a high-level analytical model to predict end-to-end
performance, dividing energy between sensing, communication, and inference. The model’s figure of

5



merit is the number of interesting sensor readings that can be sent in a fixed amount of harvested
energy. This is denoted as IMpJ or interesting messages sent per joule harvested. In the baseline
system that offloads all computation, IMpJ is very low because communication dominates the energy
budget. Systems with local inference, on the other hand, show large end-to-end benefits on the
order of 480×. But, for these gains to be realized in practice, inference must be accurate, and the
benefits quickly deteriorate as inference accuracy declines and the systems communicates more false
positives.

Commodity MCUs are severely resource constrained: Deep neural networks with high accu-
racy, however, often require megabytes or gigabytes of memory to store activations and weights. This
is in opposition with what a ULP MCU offers – main memory is usually 256KB or less. Thus the
first problem to solve is squeezing the NN into device memory without a significant loss of accuracy.

GENESIS compresses NNs: Sonic uses Genesis, a neural network architecture search tool, that
I developed to compress NNs. Genesis employs three techniques known to reduce memory footprint:
1) it clamps weights close to zero to zero, making weight matrices sparse, 2) it converts 32b floating
point to 16b fixed point, cutting memory footprint in half, and 3) it factors weight matrices into
several smaller matrices for fully-connected and convolutional layers. By aggressively applying
each of these techniques and then fine-tuning the resulting configuration with additional retraining,
Genesis reduces an NN’s memory footprint of 10s of megabytes to 10s or 100s of kilobytes while
minimizing accuracy loss to 5% or less.

GENESIS maximizes IMpJ: Of the numerous different feasible configurations of a NN, Genesis

selects the configuration that maximizes IMpJ. This choice is non-trivial. True positive, true negative,
and inference energy affect end-to-end application performance in ways that are difficult to predict.
Simply choosing the most accurate configuration, is insufficient since it may waste too much energy
or under-perform other configurations on true positive or true negative rates.

Intermittent operation complicates local inference: Genesis finds the optimal NN for deploy-
ment, but intermittent operation is still an obstacle to local inference. An energy-harvesting device
operates intermittently slowly accumulating energy in a hardware buffer (e.g., a capacitor) and oper-
ating when the buffer is full. The device drains the buffer as it operates, then it turns off and waits
for the buffer to fill again. A power failure clears volatile processor state while non-volatile memory
persists. Repeated power failures impede progress [27], and may leave memory inconsistent due to
partially or repeatedly applied non-volatile memory updates [28]. These progress and consistency
issues lead to incorrect behavior that deviates from any continuously-powered execution [29]. Prior
work addressed progress and memory consistency using software checkpoints [28, 30, 31], non-volatile
processors (NVPs) [32, 33], and programming models based around atomic tasks [34–36]. These
systems guarantee correctness but cost performance and energy (as much as 10×). What these
systems have missed is the opportunity to exploit the structure of the computation to lower the cost
of guaranteeing correctness. Sonic relies on the structure of loop-heavy computations like DNN
inference to maintain correctness with minimal energy-overhead.
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SONIC enables inference on intermittent, energy-harvesting devices: Sonic is an intermittence-
aware software system with specialized support for DNN inference. Sonic builds on prior work
on atomic task-based runtime systems [35] for maintaining correct execution, but avoids specific
sources of energy-inefficiency by leveraging computation structure. Specifically, Sonic introduces
loop continuation, an intermittence-safe optimization that reduces wasted work (work redone after
power failure), unnecessary data privatization (arising from undo or redo logging), and atomic
task transition overheads (i.e. commits to non-volatile memory). Loop continuation selectively
violates the task abstraction for loop index variables, letting Sonic directly modify loop indices
without frequent and expensive saving and restoring. By writing loop indices directly to non-volatile
memory, Sonic checkpoints its progress after each loop iteration. This is unlike prior work which
splits long-running loop iterations into many smaller task-tiles that each execute a fixed number
of iterations. Thus, as shown in Fig. 2, following a power interruption, loop continuation allows
execution to resume where it left off – the ninth loop iteration – rather than restarting every n-th
(fifth in this case) iteration like task-tiling does. Further, loop continuation is safe because Sonic

ensures that each loop iteration is idempotent, enforcing that the same data is never read and written
to in the same iteration.

SONIC is efficient on commodity hardware: I evaluated SONIC running three neural networks
on an MSP430 development board powered by capacitor storing energy harvested by a Powercast
radio-frequency harvester (shown in Fig. 3). I compared SONIC to a state-of-the-art task-based
runtime system that splits work into tiles. SONIC is the first demonstration of an NN running on
an intermittent, energy-harvesting device and uses 6.9× less energy than the task-tiling system.

Commodity hardware is fundamentally energy-inefficient: The experience building SONIC
exposed the limitations of existing commodity microcontrollers. Some of these limitations are
superficial – the MSP430 has no caches, no on-chip multiplier and does not implement vector left
shift. However, these devices are also fundamentally flawed in their execution model. They implement
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scalar execution which burns significant amount of energy fetching and decoding instructions (≈ 40%

of total energy) as well as communicating intermediates between instructions through the register file
(≈ 20% of total energy). Clearly ASIC designs would reduce or eliminate these sources of inefficiency,
but would also compromise on flexibility and programmability. Choosing the correct execution model
therefore is critical to balancing flexibility/programmability with energy-efficiency.

2.2 Manic: an ULP, vector-dataflow co-processor

Manic is the solution to the problems identified with existing commodity microcontrollers. Manic

is an ULP, vector-dataflow co-processor that combines vector and dataflow execution to reduce
instruction supply and vector register file (VRF) energies. The following describes the vector-dataflow
execution model, how Manic reduces VRF accesses, the microarchitecture of Manic and compares
Manic to existing designs.

Vector-dataflow execution reduces energy by combining vector and dataflow execution:

Manic introduces vector-dataflow execution. Vector-dataflow execution provides general-purpose
programmability, while minimizing instruction and data supply overheads. It combines vector
execution with dataflow instruction fusion. In vector execution, vector instructions specify an
operation that applies to an entire vector of input operands (as in ample prior work). The key
advantage of this is that control overheads imposed by each instruction – instruction cache access,
fetch, decode, and issue – amortize over the many operands in the vector of inputs. Fig. 4 illustrates
the difference between scalar execution and vector execution. Blue arrows show dataflow and orange
arrows show control flow. Fig. 4a shows scalar execution, which repeatedly fetches and decodes the
same instructions. Fig. 4b shows vector execution. The execution fetches three vector instructions,
which each perform the same operation across the sequence of vector operands. This amortizes the
control overhead of a scalar execution, reducing instruction supply energy.

The other aspect to vector-dataflow execution is dataflow instruction fusion. Dataflow instruction
fusion identifies windows of contiguous, dependent vector instructions. Dataflow instruction fusion
eliminates register file reads by directly forwarding values between instructions within the window.
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This reduces data supply energy compared to vector execution which performs two vector register
file reads per instruction. Accessing the vector register file has an extremely high energy cost that
scales poorly with the number of access ports [18, 37]. Fig. 4c shows vector-dataflow execution.
Unlike vector execution, control proceeds vertically then horizonitally. In the figure, Manic executes
the first element (v[0]) across instructions I0, I1, and I2. This enables dataflow forwarding from
I0 to (shown with blue arrows) to I2 without accessing the VRF. Then control steps horizontally,
executing the same window of operations on the next element of the vector, v[1]. In this way,
dataflow instruction fusion eliminates VRF reads and reduces data supply energy.

Kill annotations reduce VRF writes: Manic also eliminates a majority of VRF writes using
compiler annotations to hint to the hardware when a VRF write is unnecessary. The compiler
identifies when a value is dead and will no longer be used. In these cases, it marks the value using a
kill annotation, telling the hardware to skip the VRF write. Since values are usually finally consumed
shortly after being produced, kill annotations eliminate most VRF writes and significantly reduce
VRF energy.

Microarchitecture of MANIC: Fig. 5 shows the design of Manic. Manic adds four components
to a simple vector core to support vector-dataflow execution: (1) issue logic and a register renaming
table; (2) an instruction window buffer; (3) an xdata buffer and (4) a forwarding buffer.

Manic’s issue logic is primarily responsible for creating a window of instructions to execute
according to vector-dataflow. The issue logic activates once per window of instructions, identifying,
preparing, and issuing for execution a window of dependent instructions over an entire vector of
inputs. The issue logic identifies dataflow between instructions by comparing the names of their
input and output operands. If two instructions are dependent – the output of one of the instructions
is the input of another – Manic renames the instructions’ register operands to refer to a free location
in Manic’s forwarding buffer, instead of to the register file. The issue logic records the renaming
in Manic’s renaming table, a small, fixed-size, directly-indexed table. After identifying dependent
operations in a window, the issue logic dispatches the window of operations for execution.

Manic buffers instructions with renamed operands in the instruction window. The instruction
window determines what operation Manic’s single functional unit should execute next. A key feature
of the instruction window’s control logic is its ability to select an operand’s source or destination.
For input operands, the instruction window controls whether to fetch an operand from the VRF or
from Manic’s forwarding buffer. Likewise, for output operands, the instruction window controls
whether to write an output operand to the VRF, to the forwarding buffer, or to both.

In addition to the information in the instruction buffer, some operations like vector loads and
stores require extra data (e.g. base address and stride) available from the scalar register file when
the instruction is decoded. Due to the loosely coupled nature of Manic, this extra data must be
buffered alongside the vector instruction. Since not all vector instructions require values from the
scalar register file, Manic includes a separate buffer, called the xdata buffer, to hold this extra data.

Finally, the forwarding buffer is a small, directly-indexed buffer that stores intermediate values
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as Manic’s execution unit forwards them to dependent instructions in the instruction window.
The issue logic lazily allocates space in the forwarding buffer and renames instruction’s forwarded
operands to refer to these allocated entries. The benefit of the forwarding buffer is that it is very
small and simple, which corresponds to a very low static power and access energy compared to the
very high static power and access energy of the vector register file. By accessing the forwarding
buffer instead of accessing the VRF, an instruction with one or more forwarded operands consumes
less energy than one that executes without Manic.

MANIC is energy-efficient: I evaluated Manic in a complete system (including SRAM main
memory and RISC-V scalar core) built entirely in RTL including SRAM macros and using industry-
grade CAD tools to estimate power via a post-synthesis annotated switching model. I compared
Manic to a scalar core baseline as well as a vector baseline, which computes vector instruction-by-
instruction, reading and writing vector outputs to a VRF. Manic uses 2.8× and 38.1% less energy
while achieving similar performance than the scalar and vector designs, respectively. To further
validate the Manic architecture, Manic is being taped-out so that energy can be measured directly
from a silicon prototype. A broader discussion of the tape-out can be found in Sec. 3.1.

2.3 Snafu: an energy-minimal CGRA-generation framework and architecture

Snafu is an ULP CGRA generation framework and architecture that improves upon MANIC by
implementing spatial-vector-dataflow execution. The following describes Snafu in detail – starting
with the Snafu framework, then describing how Snafu minimizes energy and finally, how Snafu

compares to MANIC.

SNAFU generates ULP CGRAs: Snafu is a framework for generating energy-minimal, ULP
course grain reconfigurable arrays and compiling applications to run efficiently on them. The
generated CGRA is comprised of a set of heterogeneous processing elements connected to each other
via an on-chip network. The architecture is coarse in that the PEs support higher-level operations,
like multiplication, on multi-bit data words, as opposed to bit-level configurability in FPGAs. The
PEs can be configured by the compiler to perform different operations and the NoC can be configured
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to route values directly between PEs.
Fig. 6 shows Snafu’s workflow. Snafu takes two inputs: a library of processing elements (PEs)

and a high-level description of the CGRA topology. Snafu lets designers customize the ULP CGRA
via a “bring your own functional unit” approach, defining a generic PE interface that makes it easy
to add custom logic to a generated CGRA.

With these inputs, Snafu generates complete RTL for the CGRA. This RTL includes a statically
routed, bufferless, multi-hop on-chip network parameterized by the topology description. It also
includes hardware to handle variable-latency timing and asynchronous dataflow firing. Finally,
Snafu simplifies hardware generation by supporting top-down synthesis, making it easy to go from
a high-level CGRA description to a placed-and-routed ULP design ready for tape out.

SNAFU minimizes energy from the ground-up: Snafu is designed from the ground-up to
maximize energy-efficiency in three ways: 1) by implementing spatial-vector-dataflow, 2) by support-
ing asynchronous dataflow firing without tag-token matching, and 3) by minimizing buffers in the
on-chip network.

Snafu reduces energy by implementing spatial vector-dataflow execution. Like vector-dataflow,
Snafu’s CGRA amortizes a single fabric configuration across many computations (vector), and
routes intermediate values directly between operations (dataflow). But Snafu spatially implements
vector-dataflow: Snafu buffers intermediate values locally in each PE (vs. Manic’s shared forwarding
buffer) and each PE performs a single operation (vs. Manic’s shared pipeline). This minimizes
switching activity in shared pipeline resources, a significant sink of energy in Manic. In fact, the
reduction in switching activity in Snafu accounts for the majority of the 41% of energy savings
that Snafu achieves vs. Manic.

Snafu also supports asynchronous dataflow firing without expensive tag-token matching. Prior
CGRAs have explored both static and dynamic strategies to assign operations to PEs and to schedule
operations [38]. Static assignment and scheduling is most energy-efficient, whereas fully dynamic
designs require expensive tag-matching hardware to associate operands with their operation. Snafu

is designed to easily integrate new PEs with unknown or variable latency, so a fully static design
is not well-suited to Snafu, but Snafu cannot afford full tag-token matching either. Snafu’s
solution is a hybrid CGRA with static PE assignment and dynamic scheduling. Each PE uses local,
asynchronous dataflow firing to tolerate variable latency, avoiding tag-matching by enforcing that
values arrive in-order. This design lets Snafu integrate arbitrary PEs with little energy or area
overhead (< 2% system energy).

Lastly, Snafu includes a statically-configured, bufferless, multi-hop on-chip network designed for
high routability at minimal energy. Static circuit-switching eliminates expensive lookup tables and
flow-control mechanisms without degrading performance (as showed by [39]). The network is also
bufferless (a PE buffers values it produces), eliminating the NoC’s primary energy sink (half of NoC
energy or more [40]).

SNAFU is faster and more energy-efficient than MANIC: I used Snafu to generate Snafu-
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Arch, a 6x6 mesh with four multiply units, eight scratchpad units, twelve memory units, and twelve
basic ALU units. I synthesized Snafu using an industrial sub-28nm, high-threshold-voltage FinFet
PDK including compiled memories. I compared Snafu to MANIC, to a scalar baseline, and to a
vector baseline across ten different benchmarks using a post-synthesis annotated switching model to
estimate power. Fig. 7 shows the average normalized energy (normalized to scalar baseline) of the
different designs across the benchmarks. On average, Snafu uses 81%, 57%, and 41% less energy
and is 9.9×, 3.2×, and 4.4× faster than the scalar, vector, and MANIC designs, respectively.

SNAFU’s flexibility comes at minimal cost: To compare Snafu to an ASIC, I conducted
three case-studies on FFT, Sort, and DMM that compare Snafu to fully-custom ASIC designs in
the same technology node. Additionally, I implemented four intermediate designs between Snafu

and the ASIC designs to determine sources of inefficiency in Snafu. Fig. 8 shows the case-study
for DMM. From left-to-right are: Snafu, Snafu-Tailored which customizes the fabric for DMM,
Snafu-Bespoke which removes reconfigurability, Dot-Async which is a dot product accelerator
with asynchronous dataflow firing, Dot-Accel, a dot-product accelerator, and finally DMM, a dense
matrix-matrix multiply accelerator. Snafu is within 2.6× of the energy of the ASIC design without
sacrificing programmability. Looking deeper, these results show that software programmability
(Snafu-Tailored uses 14% more energy than Snafu-Bespoke) and asynchronous dataflow firing
(Dot-Accel uses 3% more than Dot) costs minimal energy and that there is opportunity to improve
overall system efficiency by accelerating larger portions of computation with Snafu (Snafu at the
moment only accelerates inner-loops like dot-product).

3 Ongoing and Future work

My prior work is unified on the pursuit of energy-efficiency without sacrificing programmability and
with a focus on software and computer architecture. My ongoing and proposed work will follow in
a similar vein, rounding out a new energy-efficient system stack. At the low-level, I will tape-out
Manic in order to validate the vector-dataflow execution model by measuring energy directly from
a physical prototype. At the other end of the stack, I will investigate compiler techniques to target
Snafu-like architectures, improving overall system efficiency by further offloading computation from
a scalar core to a Snafu-like CGRA.

3.1 Manic-Silicon

Manic-Silicon is a complete silicon prototype that includes the Manic co-processor discussed
previously. It has been under development for nearly two years – taping out a custom chip is
a significant undertaking. Recently I received testchips back from Intel and characterization of
the silicon is ongoing. The following paragraphs discuss the objectives of the testchip, the design,
verification and bring-up of the testchip and concludes with a summary of measured results.
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3.1.1 Objectives and design of Manic-Silicon

Manic-Silicon has two objectives: 1) be a viable replacement for existing MCUs in ULP sensor
deployments and 2) validate vector-dataflow execution against competing execution models. Towards
the first objective, Manic-Silicon meets the criteria for remote ULP sensor deployments; specifically,
the testchip operates at extreme low-power, supports general-purpose programs, can run standalone
(without an external FPGA or MCU driving control), has I2C and GPIO to communicate with
sensors and integrates a non-volatile main memory, a requirement for devices that may suffer
(frequent) power failures. Towards the second objective, the Manic-Silicon testchip includes
several independent designs that implement different execution models for comparison. They include
scalar, vector, vector-dataflow, and application-specific. The following paragraph describes each
design in more detail.

MANIC-SILICON validates vector-dataflow against competing execution models: Manic-

Silicon includes five different designs: a scalar design, an optimized vector design, Manic, the
vector design with a custom VRF (custom SRAM macro), and a design that includes three different
accelerators. Each design follows the block diagram in Fig. 9, possessing a RISC-V (RV32emi) micro-
controller, a 2-KB instruction cache, a 4-KB data cache, a module that handles I2C communication
and programming, a module that handles GPIO communication, a module that tracks statistics
about device operation, and main memory composed of 64KB of SRAM, 1KB of ROM, and 256KB
of embedded MRAM (eMRAM). The scalar design adds no additional components to this common
core. The vector design adds a simple vector co-processor. The co-processor has a three-stage
pipeline (VIssue, VExecute, VWriteback) that computes a vector operation by iterating over vector
elements. The Manic design adds the Manic co-processor. The vector design with the custom
VRF replaces the VRF made from standard Intel SRAM macros in the vector design with custom
SRAM macros; instead of using two banks of 1r1w Intel SRAM macros to emulate a 2r1w macro,
the custom VRF is made up of true 2r1w custom SRAM macros. Lastly, the accelerator design
has three accelerator: a sparse-matrix-dense-vector multiply accelerator, a sort accelerator, and a
dense convolution accelerator. Each design serves as comparison point: the scalar design is similar
to existing commodity devices, the vector designs implement vector execution, providing the closest
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competition to MANIC, and the accelerator design is representative of ASIC designs, providing the
upper-bound in energy-efficiency.

Differences in implementation of MANIC: Manic-Silicon’s implementation of the Manic

microarchitecture slightly differs from what was previously discussed in Sec. 2.2 and that which
is reported in [41]. Low-level simulations of entire designs showed that Manic’s shared pipeline
resources toggled more often and burned more power than the vector baseline’s. This is a direct
result of the implementation of the vector-dataflow execution model where different operations
time multiplex on the same resources. To reduce toggling, the basic three-stage pipeline (VIssue,
VExecute, VWriteback) is augmented with two additional stages – VGate and VMemory. VGate
comes before VExecute, while VMemory is before VWriteback. VGate determines the source for
each operand – i.e., from the VRF, the forwarding RF, or pipeline forwarding paths – and steers
operands to the multiplier or ALU in the VExecute stage. This prevents unnecessary toggling on
the multiplier or ALU. VMemory in a similar way prevents toggling on memory ports.

Why eMRAM?: Each of the designs on Manic-Silicon include 256KB of embedded MRAM.
This is a requirement for remote deployments where energy is sparse and a device may suffer frequent
power failures. Manic-Silicon is also one of the first demonstrations of eMRAM integrated into a
complete system. eMRAM provides non-volatility at lower costs than competing NVM technologies.
Compared to flash, eMRAM has word-level addressibility, higher write endurance, lower read and
write latencies, and lower read and write energies. Also since it can be fabricated in the same process
as logic the use of eMRAM avoids expensive off-chip IO.

3.1.2 Verification and bring-up of Manic-Silicon

Verification of chip design is the most important step in the tape-out process and showed its value
with Manic-Silicon as bring-up took just three days. Verification for Manic-Silicon involved
three items: 1) integration of design-for-test (DFT) structures to allow for easy debugging, 2)
safeguards in the event certain features do not work and 3) comprehensive unit and integration
testing at each level of hardware abstraction (e.g pre- and post- synthesis and post-place-and-route).
The following paragraphs describe the design-for-test strategy and chip bring-up in more detail.

Design-for-test: DFT is a design methodology that makes a design robust to feature failure. For
Manic-Silicon, I developed a series of standard DFT modules with scan-chain interfaces that
wrap selectively-chosen registers, SRAM macros, and the eMRAM macro. This allows each of these
structures to be read and written to directly while interactively minimally with on-chip logic. There
are two important examples of note in Manic-Silicon. First, entire features can be disabled and
signals routed around them; e.g. the instruction and data caches can both be disabled. Second, there
are five mechanisms for programming the chip. The first two mechanisms rely on the ROM-based
bootloader. If eMRAM is enabled program code and state is stored in the eMRAM otherwise
its stored in the SRAM. The second two mechanisms use the scan-chain interfaces to the SRAM
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and eMRAM macros. Program code and state can be written directly to these macros and the
bootloader directed to start execution immediately (without flashing) from either the SRAM or
eMRAM. Finally, in the worst case scenario there is also a mechanism for feeding the RISC-V core
directly with instructions and data for loads. These built-in safeguards are not only important for
debugging, but also protect chip operation from a number of problematic scenarios when features
might have failed.

Programming and communication with the chip: To program and communicate with the
Manic-Silicon prototype, I co-developed an Arduino-based programmer with Manic-Silicon’s
bootloader using an FPGA implementation of Manic-Silicon. The Arduino-based programmer
converts serial commands to I2C commands; passing data to and from the computer to the testchip.
Programming is initiated by the testchip which asks the programmer for the application size. The
programmer then communicates with the computer to get the application’s binary size and responds
to the testchip over I2C. Then the testchip repeatedly asks the programmer for bytes of the application
binary. The programmer receives this data from the computer and responds to the testchip. There is
a handshaking protocol between both the programmer and the computer as well as the programmer
and the testchip. This ensures data is not lost during flashing/programming. Once all data has
been transferred, the testchip jumps to the starting address in main memory. The programmer
continues to be connected, handling further communication (primarily printing to console) between
the testchip and the computer.

Tuning the eMRAM: Besides programming, the other important item for chip bring-up is the
tuning of the embedded MRAM macro. Due to manufacturing variability, configuration of the
eMRAM is different chip-to-chip. As such there are a number of different settings and parameters
to get the eMRAM macro reading and writing correct data as well as minimizing write latency.
A collaborator helped build a tool to quickly sweep the configuration space (using the scan-chain
interface with the eMRAM) to determine the optimal settings for a particular instance of the macro.

3.1.3 Characterization of silicon

Manic-Silicon achieves state-of-the-art energy-efficiency and ultra-low-power operation. The
following paragraphs describe the measurement setup and characterization of the silicon in detail.

Measuring power from the chip: Manic-Silicon is designed with measuring power in mind.
Logic, SRAM, and eMRAM are on separate supply rails so that their contribution to total power
can be quantified. Further, the five design in Manic are isolated from each other in the Logic and
SRAM domains. In other words, power can be supplied to the logic and SRAM of a single design at
a time.

To measure power, I measure current using a digital voltmeter in series and/or a source meter
unit. I sweep clock frequency and SRAM and logic voltages to determine the energy-minimal
configuration.
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MANIC-SILICON achieves 256MOPS/mW using 19µW @ 4MHz: While further characteri-
zation is ongoing, Manic-Silicon achieves state-of-the-art efficiency and validates vector-dataflow
execution and the Manic architecture. Fig. 10 shows an electron micrograph of Manic-Silicon

testchip. With MRAM disabled, Manic-Silicon achieves a peak efficiency of 256MOPS/mW at
ultra-low-power consumption of 19µW at 4MHz. This is 2.6× higher than the prior state-of-the-art
low-power optimized microcontroller. Further compared to the vector design, vector-dataflow exe-
cution saves 12% energy (with caches disabled) on average across ten benchmarks by eliminating
frequent accesses to the VRF.

Manic-Silicon is also one of the first demonstrations of eMRAM integrated into a complete
design. With eMRAM enabled, leakage and dynamic power of the macro dominate overall system
power. Leakage of SRAM and the logic together is on the order of several microwatts, but leakage of
MRAM is 0.7− 1.1mW (range due to chip manufacturing variability and data stored in MRAM).
Further, dynamic power can be another 1− 1.5mW . The caches are important to reduce dynamic
power and energy by minimizing accesses to the eMRAM, but limit clock frequency, which puts
an upper bound on efficiency given the high leakage of the macro. With that said, a system with
eMRAM enabled still achieves 11MOPS/mW .

Ongoing characterization and future opportunities: Characterization of Manic-Silicon is
ongoing, focusing on comprehensively evaluating the Manic design against baselines across different
benchmarks and applications. See the next section for a detailed timeline of the development
and characterization of Manic-Silicon. Additionally, Manic-Silicon offers two future research
directions to explore: 1) deployment of the hardware to a remote environment and 2) fine-grain
(power-)gating of MRAM and memory management. The first direction is under investigation by a
colleague, who is developing a custom PCB for Manic-Silicon so that Manic-Silicon can be
launched into space as part of a chipsat. The second direction would improve the energy-efficiency
of Manic-Silicon when eMRAM is enabled. eMRAM uses significantly more leakage and dynamic
power than logic and SRAM, so minimizing the amount of time and accesses to it is fundamental
to improving energy-efficiency. Fortunately, Manic has 64KB of SRAM that can be used as a
scratchpad. Either applications need to be rewritten to effectively use the SRAM or a compiler
pass needs to be developed to automatically manage memory between the volatile and non-volatile
segments. The energy and latency costs of turning on and off the MRAM will dictate the rate at
which the MRAM can be gated and the granularity of the data stored in SRAM.

3.2 CGRA Compilation

Compiling code to target a CGRA is a challenging research problem, but is important to address since
it can improve programmer productivity and overall system efficiency. The problem is framed by three
questions: 1) what is the programming abstraction and how does it affect compilation and efficiency,
2) how to scale the compiler (and fabric) to handle programs with hundreds or thousands of operations,
and 3) what are the required constraints on a program for efficient execution on a reconfigurable fabric.
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The following paragraphs motivate the need for a compiler and then discuss each question in detail.
Compilation improves overall system efficiency by increasing programmer productivity:

A compiler improves programmer productivity by raising the programming abstraction. But for
Snafu-like CGRAs it also will improve overall system energy-efficiency. This is because Snafu-like
CGRAs use 81% less energy than scalar designs, meaning that if more work is pushed to the CGRA
fabric from the scalar core, overall system efficiency increases. By raising the abstraction from
low-level vector assembly operations to higher-level code constructs, the efficiency of Snafu-like
CGRAs is more accessible to the programmer.

More than auto-vectorization: However, compilation for Snafu-like CGRAs is more than just
auto-vectorization. While Snafu’s compiler only supports low-level vector operations perfect for
vectorizable inner-loops without complex control-flow, there is opportunity to accelerate outer-
loops to improve efficiency even further. The case study in Fig. 8 provides evidence: the dot-
product accelerator uses 18% more energy than the dense-matrix-matrix multiply accelerator, which
accelerates outer-loops. This suggests that further efficiency can be unlocked by compiling outer-loops
and more complex control-flow constructs to the CGRA fabric.

I now turn my attention to the three previously-mentioned research questions that frame the
development of a compiler to target Snafu-like CGRAs.

What is the programming abstraction?: The first question to explore has to do with the
programming abstraction because it affects the latter two questions as well as energy-efficiency.
Snafu’s existing compiler exposes a low-level vector assembly interface, which is sufficient for
programs that are easily vectorized. But not all programs can be easily transformed to vector
operations and they may require expert-level knowledge to do so. Instead a different abstraction can
be provided. There are two general approaches: one based on imperative languages and the other
based on a functional approach utilizing parallel patterns.

Wavescalar [42], TRIPS [43], and SGMF [44] provide an imperative interface, relying on compiler
passes to extract dataflow graphs that can be scheduled onto hardware. They co-design the
reconfigurable fabric hardware with the compiler to improve efficiency and natively support constraints
on program order that the imperative interface assumes (e.g. load-store ordering). However, there
are two challenges with this approach. First, dataflow graphs extracted directly from imperative
programs tend to be larger and more complex than programs/graphs using parallel patterns. This
makes the mapping of dataflow graphs nodes (operations) to PEs more difficult. Second, the
imperative interface makes memory alias disambiguation difficult or in many cases impossible. This
can restrict parallelism and by extension performance because the compiler is overly conservative
since in many cases it cannot determine whether loop iterations are independent or not. It can also
mean that extra hardware is required to check that operations execute in order with the correct
operands. The hardware buffers intermediates in queues, tags data, and checks the tags of inputs to
make sure they match before enabling an operation. This comes at the expense of energy.

The alternative approach uses parallel patterns. Parallel patterns like map, fold, reduce, etc.
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capture common loop idioms. They also make explicit loop-carry dependencies and the ordering
(or lack thereof) of loop iterations. This makes it possible to decompose a parallel pattern into
many smaller independent tasks, which can effectively utilize hardware resources. Plasticine [45] and
Softbrain [46] rely on this property to simplify compilation and maximize performance. However,
there are limitations to parallel patterns. Applications written using imperative languages need to
be translated to using parallel patterns. This can sometimes be difficult or impossible depending on
the patterns supported and application logic. For example, loops with a bound that changes during
iteration (e.g. outer-loop in naive BFS) are challenging; this relatively common pattern makes the
static division of work nearly impossible. Moreover, there is no exhaustive list of parallel patterns,
which means that applications might rely on patterns not (efficiently) supported by hardware.
Follow-up work [47, 48] to Plasticine had to add support for different patterns in order to accelerate
database and sparse workloads.

Is CGRA compilation even practical?: The next framing question has to do with the scalability
of compiler as application logic complexity increases. It is deeply dependent on the division of
responsibility between software and hardware. Prior work has struggled to find the balance. Some
work on systolic arrays places responsibility wholly on software to produce static schedules for space
and time. These architectures require that the timing of all operations be known before execution so
caches are generally not supported. Also, they rely on complicated compilers that do not scale as
they have to unroll loops (sometimes without limit) to discover initiation intervals for high utilization
of hardware resources.

Other prior work puts all responsibility on the hardware. These are mainly out-of-order core
designs that dynamically schedule operations, rename registers and allocate functional units on-
the-fly. This requires significant hardware (e.g. reorder buffer, store-queue, etc.), which limits
energy-efficiency.

Finally, some prior work divides the scheduling problem. This is the secret to Snafu’s compiler
scalability – the software schedules in space, while the hardware schedules in time. Specifically, sup-
porting asynchronous dataflow adds minimal energy overhead, but greatly simplifies the compilation
problem. Maintaining this balance is therefore critical to future Snafu-like CGRAs that accelerate
more than just vectorizable, inner-loop nests.

What are the constraints on a DFG to maximize energy-efficiency?: The last framing
question asks what constraints on a program’s dataflow graph are needed to maximize energy-
efficiency while preserving correctness and without sacrificing performance. The implementation
of conditional execution is a motivating example for this question. Conditional execution can
be implemented in three ways: phi, inverse-phi, and predication. Each adds a different set of
dependencies to a program’s dataflow graph.

Phi gates take two data inputs and a selector, that chooses between the data inputs, producing a
single data output. These gates maximize performance at the cost of energy-efficiency; both sides of
a branch produce results with the phi gate discarding one of them.
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Inverse-phi are the complement to phi gates. They take a single data input and a selector;
the gate has two outputs with the selector choosing between the outputs for sending input data.
This approach minimizes energy by disabling one side of the branch, but does not achieve maximal
performance since the branch condition cannot be evaluated in parallel.

Finally, there is predication. Predication adds a dependence between the sides of a branch,
forwarding data from one side of the branch to other. If the condition is true then the true
branch fires and the false branch passes through the results of the true branch; if the condition is
false the true branch still fires but sends dummy data that the false branch ignores, sending the
results of its operations instead. Predication turns branching code into straightline code, balancing
energy-efficiency with performance.

Thus, implementation matters. Phi gates, inverse-phi gates, and predication place different
constraints on a program’s dataflow graph, which has implications for performance and energy-
efficiency.

Ongoing work: Compiling programs for Snafu-like CGRAs is in its exploratory phase. The three
framing research questions are guiding development. Along with a colleague, I am investigating
using LLVM to extract and transform a program’s dataflow graph, which can be scheduled on CGRA
hardware. Please see the following section for a timeline.

4 Timeline

Fig. 11 shows a detailed timeline for proposed work and my thesis dissertation and defense. I
submitted Manic-Silicon in September and will conduct further characterization of the testchip in
preparation for resubmission to VLSI in February (and/or HotChips in April). The work on CGRA
compilation is less developed. I am working with a colleague to push forward development and a
submission to MICRO in late March might be possible. Finally, I plan on starting work on my
dissertation at the new year and am aiming to defend in the Spring.
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5 Conclusion

My work contributes to a new system stack that maximizes energy-efficiency without sacrificing
programmability from software to silicon. Sonic is a software runtime system that enables machine
inference on intermittent, energy-harvesting devices. Manic is a vector-dataflow co-processor that
is far more efficient than existing COTS MCUs. Snafu builds on Manic, generating ULP CGRAs
that are even more efficient. Manic-Silicon is a silicon prototype of the Manic architecture that
validates vector-dataflow execution. And a compiler to target Snafu-like hardware will increase
programmer productivity and overall system energy-efficiency. Taken together these projects will
enable new applications in the ULP domain.
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